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Abstract Novel similarity measures for object recognition and image matching
are proposed, which are inherently robust against occlusion, clutter, and nonlinear
illumination changes. They can be extended to be robust to global as well as
local contrast reversals. The similarity measures are based on representing the
model of the object to be found and the image in which the model should be
found as a set of points and associated direction vectors. They are used in an
object recognition system for industrial inspection that recognizes objects under
Euclidean transformations in real time.

1 Introduction

Object recognition is used in many computer vision applications. It is particularly use-
ful for industrial inspection tasks, where often an image of an object must be aligned
with a model of the object. The transformation (pose) obtained by the object recogni-
tion process can be used for various tasks, e.g., pick and place operations or quality
control. In most cases, the model of the object is generated from an image of the object.
This 2D approach is taken because it usually is too costly or time consuming to create
a more complicated model, e.g., a 3D CAD model. Therefore, in industrial inspection
tasks one is usually interested in matching a 2D model of an object to the image. The
object may be transformed by a certain class of transformations, depending on the par-
ticular setup, e.g., translations, Euclidean transformations, similarity transformations,
or general 2D affine transformations (which are usually taken as an approximation to
the true perspective transformations an object may undergo).

Several methods have been proposed to recognize objects in images by matching 2D
models to images. A survey of matching approaches is given in [3]. In most 2D match-
ing approaches the model is systematically compared to the image using all allowable
degrees of freedom of the chosen class of transformations. The comparison is based on
a suitable similarity measure (also called match metric). The maxima or minima of the
similarity measure are used to decide whether an object is present in the image and to
determine its pose. To speed up the recognition process, the search is usually done in a
coarse-to-fine manner, e.g., by using image pyramids [10].

The simplest class of object recognition methods is based on the gray values of the
model and image itself and uses normalized cross correlation or the sum of squared or
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absolute differences as a similarity measure [3]. Normalized cross correlation is invari-
ant to linear brightness changes but is very sensitive to clutter and occlusion as well as
nonlinear contrast changes. The sum of gray value differences is not robust to any of
these changes, but can be made robust to linear brightness changes by explicitly incor-
porating them into the similarity measure, and to a moderate amount of occlusion and
clutter by computing the similarity measure in a statistically robust manner [6].

A more complex class of object recognition methods does not use the gray values
of the model or object itself, but uses the object’s edges for matching [2,8]. In all ex-
isting approaches, the edges are segmented, i.e., a binary image is computed for both
the model and the search image. Usually, the edge pixels are defined as the pixels in the
image where the magnitude of the gradient is maximum in the direction of the gradi-
ent. Various similarity measures can then be used to compare the model to the image.
The similarity measure in [2] computes the average distance of the model edges and
the image edges. The disadvantage of this similarity measure is that it is not robust to
occlusions because the distance to the nearest edge increases significantly if some of
the edges of the model are missing in the image.

The Hausdorff distance similarity measure used in [8] tries to remedy this short-
coming by calculating the maximum of thek-th largest distance of the model edges to
the image edges and thel-th largest distance of the image edges and the model edges. If
the model containsn points and the image containsm edge points, the similarity mea-
sure is robust to 100k/n% occlusion and 100l/m% clutter. Unfortunately, an estimate
for m is needed to determinel, which is usually not available.

All of these similarity measures have the disadvantage that they do not take the
direction of the edges into account. In [7] it is shown that disregarding the edge direction
information leads to false positive instances of the model in the image. The similarity
measure proposed in [7] tries to improve this by modifying the Hausdorff distance to
also measure the angle difference between the model and image edges. Unfortunately,
the implementation is based on multiple distance transformations, which makes the
algorithm too computationally expensive for industrial inspection.

Finally, another class of edge based object recognition algorithms is based on the
generalized Hough transform [1]. Approaches of this kind have the advantage that they
are robust to occlusion as well as clutter. Unfortunately, the GHT requires extremely ac-
curate estimates for the edge directions or a complex and expensive processing scheme,
e.g., smoothing the accumulator space, to determine whether an object is present and
to determine its pose. This problem is especially grave for large models. The required
accuracy is usually not obtainable, even in low noise images, because the discretization
of the image leads to edge direction errors that already are too large for the GHT.

In all of the above approaches, the edge image is binarized. This makes the object
recognition algorithm invariant only against a narrow range of illumination changes.
If the image contrast is lowered, progressively fewer edge points will be segmented,
which has the same effects as progressively larger occlusion. The similarity measures
proposed in this paper overcome all of the above problems and result in an object recog-
nition strategy robust against occlusion, clutter, nonlinear illumination changes, and a
relatively large amount of defocusing. They can be extended to be robust to global as
well as local contrast reversals.
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2 Similarity Measures

The model of an object consists of a set of pointspi = (xi, yi)
T with a corresponding

direction vectordi = (ti, ui)
T , i = 1, . . . , n. The direction vectors can be generated by

a number of different image processing operations, e.g., edge, line, or corner extraction,
as discussed in Section 3. Typically, the model is generated from an image of the object,
where an arbitrary region of interest (ROI) specifies that part of the image in which the
object is located. It is advantageous to specify the coordinatespi relative to the center
of gravity of the ROI of the model or to the center of gravity of the points of the model.

The image in which the model should be found can be transformed into a represen-
tation in which a direction vectorex,y = (vx,y, wx,y)

T is obtained for each image point
(x, y). In the matching process, a transformed model must be compared to the image at
a particular location. In the most general case considered here, the transformation is an
arbitrary affine transformation. It is useful to separate the translation part of the affine
transformation from the linear part. Therefore, a linearly transformed model is given by
the pointsp′i = Api and the accordingly transformed direction vectorsd′i = Adi, where

A =
(

a11 a12

a21 a22

)
.

As discussed above, the similarity measure by which the transformed model is com-
pared to the image must be robust to occlusions, clutter, and illumination changes. One
such measure is to sum the (unnormalized) dot product of the direction vectors of the
transformed model and the image over all points of the model to compute a matching
score at a particular pointq = (x, y)T of the image, i.e., the similarity measure of the
transformed model at the pointq, which corresponds to the translation part of the affine
transformation, is computed as follows:

s =
1
n

n∑
i=1

〈d′i, eq+p′〉 =
1
n

n∑
i=1

t′ivx+x′
i
,y+y′

i
+ u′

iwx+x′
i
,y+y′

i
. (1)

If the model is generated by edge or line filtering, and the image is preprocessed in the
same manner, this similarity measure fulfills the requirements of robustness to occlusion
and clutter. If parts of the object are missing in the image, there are no lines or edges
at the corresponding positions of the model in the image, i.e., the direction vectors will
have a small length and hence contribute little to the sum. Likewise, if there are clutter
lines or edges in the image, there will either be no point in the model at the clutter
position or it will have a small length, which means it will contribute little to the sum.

The similarity measure (1) is not truly invariant against illumination changes, how-
ever, since usually the length of the direction vectors depends on the brightness of the
image, e.g., if edge detection is used to extract the direction vectors. However, if a
user specifies a threshold on the similarity measure to determine whether the model is
present in the image, a similarity measure with a well defined range of values is desir-
able. The following similarity measure achieves this goal:

s =
1
n

n∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖ =

1
n

n∑
i=1

t′ivx+x′
i
,y+y′

i
+ u′

iwx+x′
i
,y+y′

i√
t′2i + u′2

i ·
√

v2
x+x′

i
,y+y′

i
+ w2

x+x′
i
,y+y′

i

. (2)
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Because of the normalization of the direction vectors, this similarity measure is ad-
ditionally invariant to arbitrary illumination changes since all vectors are scaled to a
length of 1. What makes this measure robust against occlusion and clutter is the fact
that if a feature is missing, either in the model or in the image, noise will lead to ran-
dom direction vectors, which, on average, will contribute nothing to the sum.

The similarity measure (2) will return a high score if all the direction vectors of the
model and the image align, i.e., point in the same direction. If edges are used to generate
the model and image vectors, this means that the model and image must have the same
contrast direction for each edge. Sometimes it is desirable to be able to detect the object
even if its contrast is reversed. This is achieved by:

s =

∣∣∣∣∣
1
n

n∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖

∣∣∣∣∣ . (3)

In rare circumstances, it might be necessary to ignore even local contrast changes.
In this case, the similarity measure can be modified as follows:

s =
1
n

n∑
i=1

|〈d′i, eq+p′〉|
‖d′i‖ · ‖eq+p′‖ . (4)

The above three normalized similarity measures are robust to occlusion in the sense
that the object will be found if it is occluded. As mentioned above, this results from
the fact that the missing object points in the instance of the model in the image will on
average contribute nothing to the sum. For any particular instance of the model in the
image, this may not be true, e.g., because the noise in the image is not uncorrelated.
This leads to the undesired fact that the instance of the model will be found in different
poses in different images, even if the model does not move in the images, because in
a particular image of the model the random direction vectors will contribute slightly
different amounts to the sum, and hence the maximum of the similarity measure will
change randomly. To make the localization of the model more precise, it is useful to set
the contribution of direction vectors caused by noise in the image to zero. The easiest
way to do this is to set all inverse lengths1/‖eq+p′‖ of the direction vectors in the image
to 0 if their length‖eq+p′‖ is smaller than a threshold that depends on the noise level in
the image and the preprocessing operation that is used to extract the direction vectors
in the image. This threshold can be specified easily by the user. By this modification
of the similarity measure, it can be ensured that an occluded instance of the model will
always be found in the same pose if it does not move in the images.

The normalized similarity measures (2)–(4) have the property that they return a
number smaller than 1 as the score of a potential match. In all cases, a score of 1 indi-
cates a perfect match between the model and the image. Furthermore, the score roughly
corresponds to the portion of the model that is visible in the image. For example, if
the object is 50% occluded, the score (on average) cannot exceed 0.5. This is a highly
desirable property because it gives the user the means to select an intuitive threshold for
when an object should be considered as recognized.

A desirable feature of the above similarity measures (2)–(4) is that they do not need
to be evaluated completely when object recognition is based on a thresholdsmin for the
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similarity measure that a potential match must achieve. Letsj denote the partial sum of
the dot products up to thej-th element of the model. For the match metric that uses the
sum of the normalized dot products, this is:

sj =
1
n

j∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖ . (5)

Obviously, all the remaining terms of the sum are all≤ 1. Therefore, the partial score
can never achieve the required scoresmin if sj < smin − 1 + j/n, and hence the
evaluation of the sum can be discontinued after thej-th element whenever this condition
is fulfilled. This criterion speeds up the recognition process considerably.

3 Object Recognition

The above similarity measures are applied in an object recognition system for industrial
inspection that recognizes objects under Euclidean transformations, i.e., translation and
rotation, in real time. Although only Euclidean transformations are implemented at the
moment, extensions to similarity or general affine transformations are not difficult to
implement. The system consists of two modules: an offline generation of the model and
an online recognition.

The model is generated from an image of the object to be recognized. An arbitrary
region of interest specifies the object’s location in the image. Usually, the ROI is speci-
fied by the user. Alternatively, it can be generated by suitable segmentation techniques.
To speed up the recognition process, the model is generated in multiple resolution lev-
els, which are constructed by building an image pyramid from the original image. The
number of pyramid levelslmax is chosen by the user.

Each resolution level consists of all possible rotations of the model, where thresh-
oldsφmin andφmax for the angle are selected by the user. The step length for the dis-
cretization of the possible angles can either be done automatically by a method similar
to the one described in [2] or be set by the user. In higher pyramid levels, the step length
for the angle is computed by doubling the step length of the next lower pyramid level.

The rotated models are generated by rotating the original image of the current pyra-
mid level and performing the feature extraction in the rotated image. This is done be-
cause the feature extractors may be anisotropic, i.e., the extracted direction vectors may
depend on the orientation of the feature in the image in a biased manner. If it is known
that the feature extractor is isotropic, the rotated models may be generated by perform-
ing the feature extraction only once per pyramid level and transforming the resulting
points and direction vectors.

The feature extraction can be done by a number of different image processing algo-
rithms that return a direction vector for each image point. One such class of algorithms
are edge detectors, e.g, the Sobel or Canny [4] operators. Another useful class of algo-
rithms are line detectors [9]. Finally, corner detectors that return a direction vector, e.g.,
[5], could also be used. Because of runtime considerations the Sobel filter is used in
the current implementation of the object recognition system. Since in industrial inspec-
tion the lighting can be controlled, noise does not pose a significant problem in these
applications.
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To recognize the model, an image pyramid is constructed for the image in which
the model should be found. For each level of the pyramid, the same filtering operation
that was used to generate the model, e.g., Sobel filtering, is applied to the image. This
returns a direction vector for each image point. Note that the image is not segmented,
i.e., thresholding or other operations are not performed. This results in true robustness
to illumination changes.

To identify potential matches, an exhaustive search is performed for the top level
of the pyramid, i.e., all precomputed models of the top level of the model resolution
hierarchy are used to compute the similarity measure via (2), (3), or (4) for all possible
poses of the model. A potential match must have a score larger than a user-specified
thresholdsmin and the corresponding score must be a local maximum with respect to
neighboring scores. As described in Section 2, the thresholdsmin is used to speed up
the search by terminating the evaluation of the similarity measure as early as possible.

After the potential matches have been identified, they are tracked through the reso-
lution hierarchy until they are found at the lowest level of the image pyramid. Various
search strategies like depth-first, best-first, etc., have been examined. It turned out that a
breadth-first strategy is preferable for various reasons, most notably because a heuristic
for a best-first strategy is hard to define, and because depth-first search results in slower
execution if all matches should be found.

Once the object has been recognized on the lowest level of the image pyramid, its
position and rotation are extracted to a resolution better than the discretization of the
search space, i.e., the translation is extracted with subpixel precision and the angles
with a resolution better than the angle step length. This is done by fitting a second
order polynomial (in the three pose variables) to the similarity measure values in a
3×3×3 neighborhood around the maximum score. The coefficients of the polynomial
are obtained by convolution with 3D facet model masks. The corresponding 2D masks
are given in [9]. They generalize to arbitrary dimensions in a straightforward manner.

4 Examples

Figure 1 displays an example of recognizing multiple objects. To illustrate the robust-
ness against nonlinear illumination changes, the model image in Figure 1(a) was ac-
quired using back lighting. Figure 1(b) shows that all three cog wheels have been rec-
ognized correctly despite the fact that front lighting is used and that a fourth cog wheel
occludes two of the other cog wheels.

5 Conclusions

A new class of similarity measures for object recognition and image matching, which
are inherently robust against occlusion, clutter, nonlinear illumination changes, and
global as well as local contrast reversals, have been proposed. The similarity measures
are used in an object recognition system for industrial inspection that is able to recog-
nize objects under Euclidean transformations in video frame rate. The system is able to
achieve an accuracy of 1/22 pixel and 1/12 degree on real images.
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(a) Image of model object (b) Found objects

Figure 1. Example of recognizing multiple objects. To illustrate the robustness against illumina-
tion changes, the model image uses back lighting while the search image uses front lighting.

Future work will focus on extending the object recognition system to handle at least
similarity transformations and possibly general affine transformations.
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