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Real-Time Object Recognition Using a Modified
Generalized Hough Transform

MARKUS ULRICH1,2, CARSTEN STEGER2,
ALBERT BAUMGARTNER1 & HEINRICH EBNER1

Abstract: An approach for real-time object recognition in digital images based on the
principle of the generalized Hough transform is proposed. It combines robustness
against occlusions, distortions, and noise with invariance under rigid motion and lo-
cal illumination changes. The computational effort is reduced by employing a novel
efficient limitation of the search space in combination with a hierarchical search
strategy using image pyramids. This approach uses the shape of the object, i.e., the
edge information in the image, as feature and it is general with regard to the type of
object.

1   Introduction

In many industrial applications, e.g., quality control, inspection tasks, or robotics, there is a
particularly high demand on the object recognition approach to find the object in the image
under certain aggravating circumstances. The recognition approach must fulfil real-time re-
quirements, the method should be highly robust against occlusion and clutter and it should
additionally be robust against non-linear contrast changes. Since in a great number of indus-
trial applications the appearance of the object to be found has limited degrees of freedom, in
this study only rigid motion, i.e., translation and rotation, is considered, which is sufficient in
many cases.

In the literature different object recognition approaches can be found. All recognition meth-
ods have in common that they require some form of representation of the object to be found,
which will be called model below. The model can be extracted, e.g., from a CAD representa-
tion or from one or more images, called reference images, of the object itself. The image, in
which the object should be recognized, will be refered to as the search image. Almost all ob-
ject recognition approaches can be split into two successive phases: the offline phase includ-
ing the generation of the model and the online phase, in which the constructed model is used
to find the object in the search image. Thus, only the computation time of the online phase is
critical considering the real-time requirement.

One possibility to group object recognition methods is to distinguish between gray value
based, e.g., GONZALEZ & WOODS (1992), BROWN (1992), LAI AND FANG (1999), and feature
based strategies, e.g., BORGEFORS (1988), OLSON AND HUTTENLOCHER (1997). Gray value
based matching has several disadvantages and does not meet most of the above mentioned
demands. It is too computationally expensive for real-time applications and is not robust
against occlusions or clutter. Features, e.g., points, edges, polygons, or regions characterize
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the object in a more compressed and efficient way than the gray value information and thus
are better suited for real-time recognition.

In our approach edges and their orientations, i.e., the shape of the object, are used as features.
A representation (model) of the object is automatically generated solely from one reference
image of the object itself. The model consists of the extracted object shape and the corre-
sponding gradient directions along this shape. The basic principle of the generalized Hough
transform (GHT) (BALLARD, 1981) is employed, which is an efficient method to compare the
class of features used in this work and therefore allows a rapid computation. After analyzing
the GHT and its major drawbacks in section 2 we further optimize the GHT by considering
modifications to fulfil industrial demands (section 3). Experimental results and analyses con-
cerning the achieved accuracy of the refined parameters complete this study (section 4).

2   The Generalized Hough Transform

2.1   Principle

A prominent property of the conventional Hough transform (HOUGH, 1962) is that its appli-
cability is restricted to detect analytic curves. Therefore, BALLARD (1981) generalizes the
Hough transform to detect arbitrary shapes. He also takes the edge orientation into account,
which makes the algorithm faster and also greatly improves its accuracy by reducing the
number of false positives.

To perform the offline phase of the GHT, the so-called R-table is constructed using informa-
tion about the position and orientation of the edges in the reference image. The R-table is
generated by choosing a reference point o , e.g., the centroid of all edge points r
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Φ . If the orientation of the shape in the search image is not constant, i.e., the object may un-
dergo rigid motions, for every possible orientation a separate R-table must be constructed.
Assuming the case of rigid motion, in the online phase a three dimensional accumulator array
A is set up over the domain of parameters, where the parameter space is quantized and range
restricted. Each finite cell of that array corresponds to a certain range of positions and orien-
tations of the reference image in the search image, which can be described by the three vari-
ables x, y, and θ . Here, x and y describe the translated position of o in the search image and
θ  the orientation of the object in the search image relative to the object in the reference im-
age. For each edge pixel s

jp  in the search image and each R-table corresponding to one ori-

entation kθ , all cells s
ji pr +  in A receive a vote, i.e., they are incremented by 1, within the

corresponding two dimensional hyper plane defined by kθθ =  under the condition that
r
i

s
j Φ=Φ . Maxima in A correspond to possible instances of the object in the search image.

2.2   Major Drawbacks

One weakness of the GHT algorithm is the - in general - huge parameter space. This requires
large amounts of memory to store the accumulator array as well as high computational costs
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in the online phase caused by the initialization of the array, the incrementation, and the search
for maxima after the incrementation step. In addition, the accuracies achieved for the returned
parameters depend on the quantization of translation and rotation. On the other hand, in prac-
tice the quantization cannot be chosen arbitrarily finely taking again memory requirements
and computation time into account.

3.   Optimizing the Generalized Hough Transform

The reduction of the high computational complexity of both, the conventional Hough Trans-
form (HT) and the GHT, has been the subject of several publications. YACOUB & JOLION

(1995), for example, propose an HT algorithm based on a hierarchical processing for line de-
tection. It performs a classical HT on small subimages and merges the extracted lines with
similar parameters by successively joining four neighboring subimages until the original im-
age size is reached. In object recognition this approach is not reasonable because the object
may be spread over several subimages, which results in a high sensitivity to clutter and noise.
Other approaches reduce the dimension of the parameter space by introducing additional in-
formation: SER & SIU (1994) use relative gradient angles in the R-table, whereas MA & CHEN

(1988) consider the slope and the curvature as local properties. These approaches have a re-
duced computational complexity in common but on the other hand have serious limitations.
The use of relative gradient angles supposes the object not to be occluded, whereas consid-
ering the slope and the curvature fails when dealing with shapes that are composed mainly of
straight lines. Additionally, the curvature is a very instable feature with regard to noise.

In this section we tackle the problems, which are mentioned in section 2.2: A hierarchical
search strategy in combination with an effective limitation of the search space is introduced.
Furthermore, a technique is presented to refine the returned parameters without noticeably
decelerating the online phase. In addition, some quantization problems and their solutions are
discussed.

3.1   Hierarchical Strategy

To reduce the size of the accumulator array and to speed up the online phase in our approach
both, the model and the search image are treated in a hierarchical manner.  First, an image
pyramid of the reference image is generated. Every pyramid level of the reference image is
rotated by all possible orientations, in which the object may appear in the search image, using
o as fix point. Then, the gradient amplitude and the gradient direction are computed from the
rotated image using the Sobel filter1. The edge pixels are extracted by thresholding the gradi-
ent amplitude.  In the online phase the recognition process starts on the top pyramid level
without any a priori information about the transformation parameters x, y and θ  available.
The cells in A that are local maxima and exceed a certain threshold are stored and used to
initialize approximate values on the lower levels. Therefore, only on the top level an R-table
is built for each rotation, whereas on the lower levels a modified strategy is necessary to take
advantage of the a priori information returned from the next higher level.

                                                
1 We prefer to use the Sobel filter because it represents a good compromise between computation time

and accuracy. Its anisotropic response and its worse accuracy can be balanced by choosing an ade-
quate quantization of the gradient directions (c.f. section 3.5).
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3.2   Blurred Region

The use of a hierarchical model and the use of an image pyramid enable efficient limitations

of the search space, because at lower levels approximate values x~ , y~ , and θ~  are known
from a higher level. To obtain an optimal search region the model shape is blurred using the
uncertainties of these a priori parameters. The proceeding is illustrated in the Figures 1, 2,
and 3. The object is overlaid on the search image at the approximate position and orientation
(Fig. 1). The positioning error xδ , yδ  is regarded by dilating the shape, i.e., the edge region,
with a rectangular mask of size )12()12( +×+ yx δδ  (Fig. 2). The blurred region is finally
obtained by successively rotating the dilated shape in both directions until the maximum am-
plitudes of the orientation error θδ±  are reached, and merging the resulting regions (Fig. 3).
The blurred regions are calculated for every quantized orientation in the offline phase and
stored together with the model. In the online phase the blurred region enables us to restrict
the edge extraction, which greatly reduces the computational effort. In addition, the size of
the accumulator array A can be narrowed to a size corresponding to the uncertainties of the a
priori parameters, which decreases the memory amount drastically.
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Fig. 1. Approximate values
are given from the level
above.
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Fig. 2. Taking the translation
error into account: Blurring by
dilating.
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Fig. 3. Taking the orientation
error into account: Blurring by
rotating.

3.3   Tile Structure

After the edge extraction the third improvement is utilized. The principle of the conventional
GHT is shown in Figure 4. The a priori information is displayed as a dark gray box repre-
senting the maximum error of the approximate translation values from the next higher level,
which will be refered to as the approximate zone. The edge pixels r

1p , r
2p , and r

3p  have iden-

tical gradient directions. Thus, if any of these edge pixels is processed in the online phase of
the conventional GHT each of the three vectors 1r , 2r , and 3r  is added and the corresponding

three cells are incremented, which is inefficient. One possible solution is to check during the
voting process, whether the added vectors fall in the approximate zone or not. However, this
query and the summation of the vectors would take too much time to allow for real-time op-
eration. Therefore, the opposite approach is taken: Already in the offline phase the informa-
tion about the position of the edge pixels relative to the centroid is calculated and stored in
the model. This is done by overlaying a grid structure over the rotated reference image and
splitting the image into tiles (Fig. 5). In the online phase the current tile is calculated using
the approximate translation parameters and the position of the current edge pixel. Only the
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vectors in the respective tile with the appropriate gradient direction are used to calculate the
incrementation cells.
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Fig. 4. The conventional GHT without using the
a priori information of the translation parame-
ters. Many unnecessary increments are executed.

Fig. 5. Taking advantage of the a priori informa-
tion using a tile structure. For each occupied tile
(bold border) a separate R-table is generated.

3.4   Refinement of Position and Orientation

The accuracy of the results of the GHT on the lowest pyramid level depends on the chosen
quantization of the parameter space. To refine the parameters of position and orientation we
use the principle of the 3D facet model (HARALICK & SHAPIRO, 1992). The 3D parameter
space A is assumed to be a 3D piecewise continuous intensity surface )’,’,’( θyxf , in which
the intensity values are represented by the number of entries in the cells of the accumulator
array. The refinement of the parameters can be done by extrapolating the maximum of the
continuous function in the neighborhood of the maximum of A (see also STEGER, 1998). This
refinement is not expensive because the only thing to do is to solve a 3×3 linear equation
system.

3.5   Problems and Solutions Concerning Quantization

When applying the principle of the GHT several problems occur concerning the quantization
of the transformation parameters and of the gradient directions. A similar difficulty occurs
using the tile structure described in section 3.3. In the following section we name these prob-
lems and present our solutions. A more detailed explanation is given in (ULRICH, 2001).

Rotation.  In general, the step size θ∆  for the discrete orientations must be chosen the
smaller the bigger the searched object is. If θ∆  is chosen too large, the maximum possible
peak height maxΓ  in A will be reduced. However, the computational effort Ω  increases line-
arly with the number of discrete orientations. To find the optimum value for θ∆  we have to
minimize the computational effort ( )θ∆Ω  while maximizing the peak height ( )θ∆Γ . The
latter can be simulated using knowledge about the pixel distribution within the shape.

Translation. Under ideal conditions the peak in the parameter space is equal to the number
of edge pixels contained in the model. If the object in the search image is translated by sub-
pixel values in x and y direction relative to its position in the reference image the peak height
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decreases because the votes are distributed over more than one cell in the accumulator array
A. Under the assumption that the neighborhood of the peak is rotational symmetric the peak
height can be made independent of subpixel translation by smoothing the translation hyper
planes, i.e., .const=θ .

Gradient Direction. The best suitable quantization of the gradient direction intervals within
the R-table depends on various factors. The determination of the interval defines the range of
gradient directions that are treated as equal. The smaller the interval the faster the computa-
tion. On the other hand, an interval that is chosen too small leads to instable results.  The ap-
propriate interval for the gradient direction depends on the variance of the gradient direction
due to noise in the image and on the inherent absolute accuracy of the Sobel filter, i.e., the
difference between the real partial derivatives and the Sobel response. These two effects are
independent from the shape of an object and can be calculated precisely.  Another factor that
affects the gradient direction is subpixel translation. The gradient variation caused by sub-
pixel translation (also due to small rotations) depends on the curvature along the shape, i.e.,
the curvature of the edge contours. One possible solution for this problem is to introduce only
stable edge points into the model whose gradient direction at most vary in a small range.  A
final important detail is how to avoid boundary effects of the gradient intervals. This can be
solved by establishing overlapping intervals.

Tile Structure.  A problem similar to the quantization of the gradient directions occurs when
using the tile structure described in section 3.3. The size of the tiles should be chosen such
that the uncertainty of the approximate position is taken into account, i.e., the dimension of
the tiles in the x and y direction should be xδ2  and yδ2 . Furthermore, it must be ensured
that an error of xδ2  and yδ2  of the approximate position o~  does not result in omitting the
relevant edge pixels as a consequence of considering the wrong tile. This problem is solved
by using overlapping tiles.

3.6   Memory Requirements and Computational Complexity

To facilitate the comparison of our object recognition method with other approaches, some
statements about the memory requirements and the computational complexity of our imple-
mentation are given. The memory requirements of the model modelM  and of the Hough pa-
rameter space in the online phase HoughM can be calculated with the following formulas:
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where
L is the number of pyramid levels decremented by one,

0
me,n is the number of model edge pixels at the lowest pyramid level (i.e., original resolution),

0
rotn is the number of quantized rotation steps at the lowest pyramid level,

gradn  is the average number of quantized gradient directions through the pyramid,
0m is the size of the model in each dimension [pixel],
0s  is the size of the search image in each dimension [pixel],
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k is the size of the tiles in each dimension [pixel], and
Ψ is a factor [0…1], which describes the distribution of the edge pixels over the bounding

box, i.e. Ψ  is the fraction of occupied tiles.

The computational complexity Ω  of the online phase can be described by

                                   ( ) ( ) Ψ
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Here,
0

se,n is the number of edge pixels in the search image at the lowest pyramid level and

θδn is the number of orientation steps on lower pyramid levels taking the range of uncertainty

of the a priori orientation parameter into account.

Table 1 shows the memory requirements and the computational complexity for some exam-
ples, which are typical in practice. To show the efficiency of our approach the corresponding
values according to the conventional GHT are listed likewise. For all examples a search im-
age size of 600600 ×  pixels ( 0s =600), a tile size of 77 ×  pixels ( k =7), a fraction of occu-
pied tiles of Ψ =0.7, and an orientation uncertainty of 3±  steps ( θδn =7) are employed.

Tab. 1. Memory requirement and computational complexity for different typical situations. Our ap-
proach using a modified GHT (MGHT) is compared with the conventional GHT (CGHT).

At the expense of a higher model size our approach drastically reduces the memory require-
ment and the computational complexity of the online phase in contrast to the conventional
GHT.

4   Experimental Results

To validate the accuracy of the resulting parameters x, y, and θ  we generated some image
sequences (652×494 pixels) containing subpixel translations and rotations of an object. The
experiments, which are illustrated in (ULRICH, 2001) in more detail, show that our approach
is able to locate objects with a maximum mean error of about 0.1 pixels in position and 0.12
degrees in orientation. After adding white noise with a maximum amplitude of 5±  to the
search image these values degraded only slightly. Furthermore, the approach is robust con-
sidering that occlusions merely decrease the peak in the accumulator array proportional to the
percentage of occlusion. To show the real-time capability: the average time needed to find an
object of size 240×130 pixels containing approximately 3000 model points in the lowest
pyramid level is about 60 msec on a PENTIUM III with 667 MHz.

L
0

me,n 0
rotn gradn 0m

0
se,n modelM  [MB] HoughM  [MB] Ω

MGHT CGHT MGHT CGHT MGHT CGHT

3 2000 360 20 200 20000 30.8 4.3 0.5 460.80.066 610⋅ 1080 610⋅
1 2000 360 20 200 20000 28.0 4.3 28.8 460.8 67 610⋅ 1080 610⋅
3 1000 360 20 200 20000 25.1 2.2 0.5 460.80.033 610⋅ 540 610⋅
3 2000 180 20 200 20000 15.7 2.2 0.2 230.40.033 610⋅ 540 610⋅
3 2000 360 30 200 20000 40.2 4.3 0.5 460.80.044 610⋅ 720 610⋅
3 2000 360 20 100 20000 16.3 4.3 0.3 176.40.066 610⋅ 1080 610⋅
3 2000 360 20 20050000 30.8 4.3 0.5 460.8 0.165 610⋅ 2700 610⋅
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5   Summary

By using a hierarchical search strategy in combination with a new effective search space
limitation our approach fulfils the requirements of real-time. Since the object’s shape does not
depend on the illumination, this method in addition is robust against illumination changes to a
certain extent. Furthermore, it is extremely robust against partial occlusion and clutter, as the
raw gray value information is not used directly. The coarse solution of the position and ori-
entation parameters of the object is adjusted in a subsequent refinement to meet the demands
for high precision and accuracy in industrial applications.
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