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Abstract

We propose an empirical performance evaluation of five
different object recognition methods. For this purpose, the
normalized cross correlation and the sum of absolute differ-
ences as two standard similarity measures in industrial ap-
plications are compared to the Hausdorff distance and two
novel recognition methods that we developed with the aim
to fulfil increasing industrial demands. After a description
of the respective methods, several criteria are introduced
that allow an objective evaluation of object recognition ap-
proaches. Experiments on real images are used to apply
the proposed criteria. The experimental set-up used for the
evaluation measurements is explained in detail. The results
are illustrated and analyzed extensively. It is shown that our
novel recognition approaches perform substantially better
than the existing approaches.

1. Introduction

Object recognition is used in many computer vision ap-
plications. It is particularly useful for industrial inspection
tasks, where often an image of an object must be aligned
with a model of the object. The transformation (pose) ob-
tained by the object recognition process can be used for var-
ious tasks, e.g., pick and place operations, quality control,
or inspection tasks. In most cases, the model of the object is
generated from an image of the object. This 2D approach is
taken because it usually is too costly or time consuming to
create a more complicated model, e.g., a 3D CAD model.

Therefore, in industrial inspection tasks one is usually in-
terested in matching a 2D model of an object to the image.
The object may be transformed by a certain class of trans-
formations, e.g., rigid transformations, similarity transfor-
mations, or general 2D affine transformations (which are
usually taken as an approximation to the true perspective
transformations an object may undergo).

A large number of object recognition strategies exist.
The approaches to object recognition examined in this paper
use pixels as their geometric features, i.e., not higher level
features like lines or elliptic arcs. Therefore, in the follow-
ing only similar pixel-based strategies will be reviewed.

Several methods have been proposed to recognize ob-
jects in images by matching 2D models to images. A sur-
vey of matching approaches is given in [3]. In most 2D
matching approaches the model is systematically compared
to the image using all allowable degrees of freedom of the
chosen class of transformations. The comparison is based
on a suitable similarity measure (also called match metric).
The maxima or minima of the similarity measure are used
to decide whether an object is present in the image and to
determine its pose. To speed up the recognition process, the
search is usually done in a coarse-to-fine manner, e.g., by
using image pyramids [12].

The simplest class of object recognition methods is
based on the gray values of the model and image itself and
uses normalized cross correlation or the sum of squared
or absolute differences as a similarity measure [3]. Nor-
malized cross correlation is invariant to linear brightness
changes but is very sensitive to clutter and occlusion as well
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as nonlinear contrast changes. The sum of gray value differ-
ences is not robust to any of these changes, but can be made
robust to linear brightness changes by explicitly incorpo-
rating them into the similarity measure, and to a moderate
amount of occlusion and clutter by computing the similarity
measure in a statistically robust manner [6].

A more complex class of object recognition meth-
ods does not use the gray values of the model or ob-
ject itself, but uses the object’s edges for matching ([2],
[9]). In all existing approaches, the edges are segmented,
i.e., a binary image is computed for both the model and the
search image. Usually, the edge pixels are defined as the
pixels in the image where the magnitude of the gradient is
maximum in the direction of the gradient. Various similar-
ity measures can then be used to compare the model to the
image. The similarity measure in [2] computes the average
distance of the model edges and the image edges. The dis-
advantage of this similarity measure is that it is not robust
to occlusions because the distance to the nearest edge in-
creases significantly if some of the edges of the model are
missing in the image.

The Hausdorff distance similarity measure used in [9]
tries to remedy this shortcoming by calculating the maxi-
mum of thek-th largest distance of the model edges to the
image edges and thel-th largest distance of the image edges
and the model edges. If the model containsn points and
the image containsm edge points, the similarity measure is
robust to 100k/n% occlusion and 100l/m% clutter. Unfor-
tunately, an estimate form is needed to determinel, which
is usually not available.

All of these similarity measures have the disadvantage
that they do not take into account the direction of the edges.
In [8] it is shown that disregarding the edge direction in-
formation leads to false positive instances of the model in
the image. The similarity measure proposed in [8] tries to
improve this by modifying the Hausdorff distance to also
measure the angle difference between the model and image
edges. Unfortunately, the implementation is based on mul-
tiple distance transformations, which makes the algorithm
too computationally expensive for industrial inspection.

Finally, another class of edge based object recognition
algorithms is based on the generalized Hough transform [1].
Approaches of this kind have the advantage that they are
robust to occlusion as well as clutter. Unfortunately, the
GHT in the conventional form requires large amounts of
memory and long computation time to recognize the object.

In all of the above approaches, the edge image is bina-
rized. This makes the object recognition algorithm invariant
only against a narrow range of illumination changes. If the
image contrast is lowered, progressively fewer edge points
will be segmented, which has the same effects as progres-
sively larger occlusion.

In this paper three of the above mentioned approaches

are analyzed and their performance is compared to those
of our new approaches. The analysis of the performance
characteristics of object recognition methods is very im-
portant. First, it makes an algorithm comparable to other
algorithms, thus helping users in selecting the appropriate
method for the task they have to solve. Second, it helps
to identify breakdown points of the algorithm, i.e., areas
where the algorithm cannot be used because some of the as-
sumptions it makes are violated. Therefore, in this paper an
attempt is made to characterize the performance of five se-
lected different object recognition approaches: The first two
methods to be analyzed are theNormalized Cross Correla-
tion [3] and theSum of Absolute Differences, because they
are rather wide spread methods in industry and therefore
well known in the application area of object recognition.
The Hausdorff Distance[9] is the third candidate, which
is also the core of many recognition implementations, be-
cause of its higher robustness against occlusions and clutter
in contrast to the sum of absolute differences and even to
the normalized cross correlation. Additionally, two novel
approaches, which are referred to asShape-Based Match-
ing [11] andModified Hough Transform[13, 14, 15] below,
are included in our analysis. The development of the latter
two approaches was motivated by the increasing industrial
demands like real-time computation and high recognition
accuracy. Therefore, the study is mainly concerned with the
robustness, the subpixel accuracy, and the required compu-
tation time of the five candidate algorithms under different
external circumstances.

The paper is organized as follows. In section 2 the men-
tioned recognition methods to be analyzed are introduced.
Since the normalized cross correlation, the sum of absolute
differences and the Hausdorff distance are standard com-
puter vision techniques, the main focus is set to our two
novel approaches. The performance evaluation is presented
in section 3, which includes the description of the evalua-
tion criteria and the employed experimental set-up as well
as the analysis of the obtained results. The conclusions in
section 4 complete this study.

2. Evaluated Object Recognition Methods

First of all we want to introduce some definitions that
facilitate the comparison between the five techniques. All
recognition methods have in common that they require
some form of representation of the object to be found, which
will be calledmodelbelow. The modelM is generated from
an image of the object to be recognized, calledreference im-
ageIr. An arbitrary region of interest (ROI) R specifies the
object’s location in the image. The image, in which the ob-
ject should be recognized, will be referred to as thesearch
imageIs. Almost all object recognition approaches can be
split into two successive phases: theoffline phaseincluding
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the generation of the model and theonline phase, in which
the constructed model is used to find the object in the search
image.

The transformation classT , e.g., translations or Eu-
clidean, similarity, affine, or arbitrary projective transfor-
mations, specifies the degrees of freedom of the object, i.e.,
which transformations the object may undergo in the search
image. For all similarity measures the object recognition
step is performed by transforming the model to a user-
limited range of discrete transformationsTi ∈ T within the
transformation class. For each transformed modelM t

i =
TiM the similarity measure is calculated betweenM t and
the corresponding representation of the search image. The
representation can, for example, be described by the raw
gray values in both images (e.g., when using the normal-
ized cross correlation or the sum of absolute differences)
or by the corresponding binarized edges (e.g., when using
the Hausdorff distance). The maximum or minimum of the
match metric then indicates the pose of the recognized ob-
ject.

2.1. Normalized Cross Correlation

The normalized cross correlationC at position(x, y) in
Is is computed as follows:

C(x, y) =
1
n

∑
(u,v)∈R

(
Ir(u, v) − µr

σr

· Is(x + u, y + v) − µs(x, y)
σs(x, y)

)
. (1)

Here,µ andσ are the mean and the standard deviation of
the gray values in the reference and the search image, re-
spectively, andn specifies the number of points inR. The
normalization causes the cross correlation to be unaffected
by linear brightness changes in the search image (see [3]).

For the purpose of evaluating the performance of the nor-
malized cross correlation we use — as one typical represen-
tative — the current implementation of theMatrox Imag-
ing Library (MIL), which is a software development toolkit
of Matrox Electonic Systems Ltd[7]. Some specific im-
plementation characteristics should be explained to ensure
the correct appraise of the evaluation results: The pattern
matching algorithm is able to find a predefined object under
rigid motion, i.e., translation and rotation. A hierarchical
search strategy using image pyramids is used to speed up the
recognition. The quality of the match is returned by calcu-
lating a match score value asScore = max(C, 0)2 · 100%.
The subpixel accuracy of the object position is achieved by
a surface fit to the match scores around the peak. Thus,
the exact peak position can be calculated from the equation
of the surface. The refinement of the object orientation is
not comprehensively explained in the documentation, but

we suppose the refinement of the obtained discrete object
orientation is realized by a finer resampling of the orienta-
tion in the angle neighborhood of the maximum score and
recalculating the cross correlation for each refined angle.

2.2. Sum of Absolute Differences

The similarity measure based on the sum of absolute dif-
ferencesD [3] at Is(x, y) is calculated by:

Error(x, y) = D(x, y) (2)

=
1
n

∑
(u,v)∈R

|Is(x − u, y − v) − Ir(u, v)| .

Thus,D indicates the average difference of the grayvalues.
Since the sum of absolute differences is a measure of dis-
similarity, we also denoteD asError.

The special implementation we investigate considers
rigid motion and makes use of image pyramids to speed up
the recognition process. The position and orientation of the
best match, i.e., the match with smallestError, is returned.
Additionally, the user is able to specify the maximum aver-
age error of the match. The lower this value is, the faster the
operator runs, since fewer matches must be traced down the
pyramid. Subpixel accuracy of position and the refinement
of the discrete orientation are calculated by extrapolating
the minimum ofD.

2.3. Hausdorff Distance

The Hausdorff distance [9] measures the extent to which
each pixel of the binarized reference image lies near some
pixel of the binarized search image and vice versa. The
binarization can be done by a number of different image
processing algorithms, e.g., edge detectors like Sobel or
Canny [4] operators, line detectors [10], or corner detec-
tors [5]. To be able to compare the results of the Haus-
dorff distance to the shape-based similarity measure and the
modified Hough transform the Sobel filter is used, which is
also used in our two approaches. To reduce the sensitivity
to outliers, the symmetric partial undirected Hausdorff dis-
tance is used. LetP r andP s be the two point sets obtained
in the reference image and in the search image respectively.
The symmetric partial undirected Hausdorff distance is then
computed by

HfF fR(P r, P s) = max(hfF (P r, P s), hfR(P s, P r)) (3)

hfF (P r, P s) = fth
pr

i
∈P r

min
ps

i
∈P s

‖pr
i − ps

i‖ (4)

hfR(P s, P r) = fth
ps

i
∈P s

min
pr

i
∈P r

‖ps
i − pr

i ‖ . (5)
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wherefF andfR are called theforward fractionand the
reverse fractionandfth denotes thef -th largest value.

Due to the lack of time we did not implement the Haus-
dorff distance by ourselves but use the original implemen-
tation by Rucklidge [9]. The program expects the forward
and the reverse fraction as well as the thresholds for the
forward and the reverse distance as input data. Since the
method of [9] returns all matches that fulfill its score and
distance criteria, the best match was selected based on the
minimum forward distance. If more than one match had
the same minimum forward distance, the match with the
maximum forward fraction was selected as the best match.
Only translations of the object can be recognized and no
subpixel refinement is included. Although the parameter
space is treated in a hierarchical way there is no use of im-
age pyramids, which makes the algorithm very slow.

2.4. Shape-Based Matching

In this section the principle of our novel similarity mea-
sure is briefly explained. A detailed description can be
found in [11].

Here, the model consists of a set of pointspi = (xi, yi)
T

with a corresponding direction vectordi = (ti, ui)
T , i =

1, . . . , n. The direction vectors can be generated by a num-
ber of different image processing operations, e.g., edge,
line, or corner extraction.

The search image can be transformed into a represen-
tation in which a direction vectordx,y = (vx,y, wx,y)T is
obtained for each image point(x, y). In the matching pro-
cess, a transformed model must be compared to the image
at a particular location by a similarity measure. We sug-
gest to sum the normalized dot product of the direction vec-
tors of the transformed model and the search image over
all points of the model to compute a matching score at a
particular pointq = (x, y)T of the image. If the model is
generated by edge or line filtering, and the image is prepro-
cessed in the same manner, this similarity measure fulfills
the requirements of robustness to occlusion and clutter. If a
user specifies a threshold on the similarity measure to deter-
mine whether the model is present in the image, a similarity
measure with a well defined range of values is desirable.
The following similarity measure achieves this goal:

s =
1
n

n∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖ (6)

=
1
n

n∑
i=1

t′ivx+x′
i
,y+y′

i
+ u′

iwx+x′
i
,y+y′

i√
t′2i + u′2

i ·
√

v2
x+x′

i
,y+y′

i
+ w2

x+x′
i
,y+y′

i

.

Because of the normalization of the direction vectors, this
similarity measure is invariant to arbitrary illumination

changes. What makes this measure robust against occlu-
sion and clutter is the fact that if a feature is missing, either
in the model or in the image, noise will lead to random di-
rection vectors, which, on average, will contribute nothing
to the sum.

The normalized similarity measure (6) has the property
that it returns a number smaller than 1 as the score of a
potential match. A score of 1 indicates a perfect match
between the model and the image. Furthermore, the score
roughly corresponds to the portion of the model that is vis-
ible in the image.

A desirable feature of this similarity measure is that
it does not need to be evaluated completely when object
recognition is based on a thresholdsmin for the similarity
measure that a potential match must achieve. Letsj denote
the partial sum of the dot products up to thej-th element of
the model:

sj =
1
n

j∑
i=1

〈d′i, eq+p′〉
‖d′i‖ · ‖eq+p′‖ . (7)

Obviously, all the remaining terms of the sum are all≤ 1.
Therefore, the partial score can never achieve the required
scoresmin if sj < smin−1+ j/n, and hence the evaluation
of the sum can be discontinued after thej-th element when-
ever this condition is fulfilled. This criterion speeds up the
recognition process considerably.

Nevertheless, further speed-ups are highly desirable.
Another criterion is to require that all partial sums have a
score better thansmin, i.e., sj ≥ smin. When this cri-
terion is used, the search will be very fast, but it can no
longer be ensured that the object recognition finds the cor-
rect instances of the model because if missing parts of the
model are checked first, the partial score will be below the
required score. To speed up the recognition process with
a very low probability of not finding the object although
it is visible in the image, the following heuristic can be
used: the first part of the model points is examined with
a relatively safe stopping criterion, while the remaining part
of the model points are examined with the hard threshold
smin. The user can specify what fraction of the model
points is examined with the hard threshold with a param-
eterg, which will be calledgreedinessbelow. If g = 1,
all points are examined with the hard threshold, while for
g = 0, all points are examined with the safe stopping
criterion. With this, the evaluation of the partial sums is
stopped wheneversj < min(smin−1+fj/n, smin), where
f = (1− gsmin)/(1− smin).

Our current implementation is able to recognize objects
under similarity transformations. To speed up the recogni-
tion process, the model is generated in multiple resolution
levels, which are constructed by building an image pyramid
from the original image. Because of runtime considerations
the Sobel filter is used for feature extraction.
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In the online phase an image pyramid is constructed for
the search image. For each level of the pyramid, the same
filtering operation that was used to generate the model is ap-
plied to the search image. This returns a direction vector for
each image point. Note that the image is not segmented, i.e.,
thresholding or other operations are not performed. This re-
sults in true robustness to illumination changes.

To identify potential matches, an exhaustive search is
performed for the top level of the pyramid. With the ter-
mination criteria using the thresholdsmin, this seemingly
brute-force strategy actually becomes extremely efficient.
After the potential matches have been identified, they are
tracked through the resolution hierarchy until they are found
at the lowest level of the image pyramid.

Once the object has been recognized on the lowest level
of the image pyramid, its position, rotation, and scale are
extracted to a resolution better than the discretization of the
search space by fitting a second order polynomial (in the
four pose variables) to the similarity measure values in a
3× 3× 3× 3 neighborhood around the maximum score.

2.5. Modified Hough Transform

One weakness of the Generalized Hough Transform
(GHT) [1] algorithm is the — in general — huge param-
eter space. This requires large amounts of memory to store
the accumulator array as well as high computational costs
in the online phase caused by the initialization of the array,
the incrementation, and the search for maxima after the in-
crementation step. In this section we introduce our novel
approach which is able to recognize objects under transla-
tion and rotation: A hierarchical search strategy in com-
bination with an effective limitation of the search space is
introduced. Further details can be found in [13], [14], and
[15] .

To reduce the size of the accumulator array and to speed
up the online phase both the model and the search image are
treated in a hierarchical manner using image pyramids. To
build theR-table the edges and the corresponding gradient
directions are computed using the Sobel filter.

In the online phase the recognition process starts on the
top pyramid level without any `a priori information about the
searched transformation parametersx, y and θ using the
conventional GHT. The cells in the accumulator array that
are local maxima and exceed a certain threshold are stored
and used to initialize approximate values on the lower lev-
els.

At lower levels approximate values̃x, ỹ, andθ̃ are known
from a higher level. To restrict the edge extraction region
and to minimize the incrementation effort, only those pix-
els in the search image that lie beneath theblurred region
are taken into account. The blurred region is defined by

dilating and rotating the shape, i.e., the edge regions, corre-
sponding to the error of the approximate values and trans-
lating it to the approximate parameter values. The blurred
regions are calculated for every quantized orientation in the
offline phase and stored together with the model. By this,
the size of the accumulator array can be narrowed to a size
corresponding to the uncertainties of the `a priori parame-
ters, which decreases the memory amount drastically.

After the edge extraction another improvement is uti-
lized. The principle of the conventional GHT is shown in
Figure 1. The `a priori information is displayed as a dark
gray box representing the maximum error of the approxi-
mate translation values from the next higher level. The edge
pixels pr

1, pr
2, andpr

3 have identical gradient directions.
Thus, if any of these edge pixels is processed in the online
phase of the conventional GHT each of the three vectors
r1, r2, andr3 is added and the corresponding three cells
are incremented, which is inefficient. Our solution greatly
improves the efficiency: Already in the offline phase the in-
formation about the position of the edge pixels relative to
the centroid is calculated and stored in the model. This is
done by overlaying a grid structure over the rotated refer-
ence image and splitting the image into tiles (Fig. 2). In the
online phase the current tile is calculated using the approx-
imate translation parameters and the position of the current
edge pixel. Only the vectors in the respective tile with the
appropriate gradient direction are used to calculate the in-
crementation cells.

Furthermore, the inherent quantization problems of the
GHT are solved by smoothing the accumulator array and
establishing overlapping gradient intervals in theR-table.

To refine the parameters of position and orientation we
use the three dimensional equivalent approach as for the
shape-based matching described in section 2.4. To evalu-
ate the quality of a match, a score value is computed as the
peak height in the accumulator array divided by the number
of model points.

3. Evaluation

3.1. Evaluation Criteria

We use three main criteria to evaluate the performance of
the five object recognition methods and to build a common
basis which allows an objective comparison.

The first criterion to be considered is therobustnessof
the approach. This includes the robustness against occlu-
sions, which often occur in industrial applications, e.g.,
caused by overlapping objects on the assembly line or se-
vere defects of the objects to be inspected. Non-linear as
well as local illumination changes are also crucial situa-
tions, which cannot be avoided in many applications over
the entire field of view. Therefore, the robustness against
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Figure 1. The conventional GHT without us-
ing the à priori information of the translation
parameters. Many unnecessary increments
are executed.
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Figure 2. Taking advantage of the à priori in-
formation using a tile structure. For each oc-
cupied tile (bold border) a separate R-table is
generated.

arbitrary illumination changes is also examined. A multi-
tude of images were taken to simulate different overlapping
and illumination situations (see section 3.2). We measure
the robustness using the recognition rate that is defined by
the number of images in which the object was correctly rec-
ognized divided by the total number of images.

The second criterion affects theaccuracyof the meth-
ods. Most applications need the exact transformation pa-
rameters of the object as input for further investigations like
precise metric measurements. In the area of quality control,
in addition, the object in the search image must be precisely

aligned with the transformed reference image to ensure a
reliable recognition of defects or other variations that in-
fluence certain quality criteria, e.g., by subtracting the gray
values of both images. We determine the subpixel accuracy
by comparing the exact (known) position and orientation of
the object with returned parameters of the different candi-
dates.

Thecomputation timerepresents the third evaluation cri-
terion. Despite the increasing computation power efficient
and fast algorithms are more important than ever. This is
particularly true in the field of object recognition, where
a multitude of applications enforce real time computation.
Indeed, it is very hard to compare different recognition
methods using this criterion because the computation time
strongly depends on the individual implementation of the
recognition methods. Nevertheless, we tried to find param-
eter constellations (see section 3.2) for each of the investi-
gated approaches that at least allow a qualitative compari-
son.

Since the Hausdorff distance does not return the object
position in subpixel accuracy and in addition does not use
image pyramids resulting in unreasonably long recognition
times, the criteria of accuracy and computation time are
only applied to the four remaining candidates.

3.2. Experimental Set-Up

In this section the experimental set-up for the evaluation
is explained in detail. We chose an IC, which is shown in
Figure 3, as the object to be found in the subsequent ex-
periments. Only the part within the bounding box of the
print on the IC formes the ROI, from which the models of
the different recognition approaches are created (see Figure
4). For the recognition methods that segment edges during
model creation (Hausdorff distance, shape-based matching,
modified Hough transform) the threshold for the minimum
edge amplitude in the reference image was set to 30 during
all our experiments. The images we used for the evaluation
are 8 bit gray scale of size652 × 494 pixels. For all recog-
nition methods we used four pyramid levels except for the
implementation of the Hausdorff distance, which does not
support a pyramid approach.

3.2.1. Robustness

To apply the first criterion of robustness and determine the
recognition rate two image sequences were taken, one for
testing the robustness against occlusions the other for test-
ing the sensibility against illumination changes. We defined
the recognition rate as the number of images, in which the
object was recognized at the correct position divided by the
total number of images.
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Figure 3. An IC is used as the object to be
recognized.

Figure 4. The model is created from the print
of the IC using a rectangular ROI.

The first sequence contains 500 images of the IC, which
was occluded to various degrees with various objects, so
that in addition to occlusion, clutter of various degrees was
created in the image. Figure 5 shows six of the 500 images
that we used to test the robustness against occlusion.

The size of the bounding box is180 × 120 pixels at
the lowest pyramid level, i.e., at original image resolution,
containing 2127 edge points extracted by the Sobel filter.
Beside the recognition rate, in addition, the correlation be-
tween the actual occlusion and the returned score values are
examined. For this purpose an effort was made to keep the
IC in exactly the same position in the image in order to be
able to measure the degree of occlusion. Unfortunately, the
IC moved very slightly (by less than one pixel) during the
acquisition of the images. The true amount of occlusion
was determined by extracting edges from the images and
intersecting the edge region with the edges within the ROI

in the reference image. Since the objects that occlude the
IC generate clutter edges, this actually underestimates the
occlusion.

The transformation class was restricted to translations, to
reduce the time required to execute the experiment. How-
ever, the allowable range of the translation parameters was
not restricted, i.e., the object is searched in the whole im-
age. For the normalized cross correlation, the Hausdorff
distance, the shape-based matching approach, and the mod-
ified Hough transform, different values for the parameter of
the minimum score were applied. The forward fraction of
the Hausdorff distance was interpreted as score value. Ini-
tial tests with the forward and reverse fractions set to 30%
resulted in run times of more than three hours per image.
Therefore, the reverse fraction was set to 50% and the for-
ward fraction was successively increased from 50% to 90%
using an increment of 10%. The parameter for the maxi-
mum forward and reverse distance were set to 1. For the
other three approaches the minimum score was varied from
10 to 90 percent. In the case of the sum of the absolute dif-
ferences the maximum error instead of the minimum score
was varied. We limited this range to a maximum error of
30. Tolerating higher values was also too computationally
expensive. As explained in section 2.4 the recognition rate
of the shape-based matching approach depends on the pa-
rameter greediness. Therefore, we additionally varied this
parameter in the range of 0 to 1 using increments of 0.2.

To test the robustness against arbitrary illumination
changes a second sequence of images of the IC was taken,
which includes various illumination situations. Three ex-
ample situations are displayed in Figure 6. Due to a smaller
distance between the IC and the camera, the ROI is now
255×140 pixels containing 3381 model points on the lowest
pyramid level. The parameter settings for the five methods
is equivalent to the settings for testing the robustness against
occlusions. Since the modified Hough transform segments
the search image, additionally the threshold for the mini-
mum edge amplitude in the online phase is varied from 5 to
30 using an increment of 5.

3.2.2. Accuracy

In this section the experimental set-up, which we used to
specify the accuracy of the algorithms, is explained. This
criterion is not applied to the Hausdorff distance, because
subpixel accuracy is not achieved by the used implementa-
tion. Generally, it seems to be very difficult to compute a
refinement of the returned parameters directly based on the
forward or reverse fraction. Since the shape-based match-
ing is the only candidate that is able to recognize scaled ob-
jects, only the position and orientation accuracy of the four
approaches are tested.

To test the accuracy, the IC was mounted onto a table
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Figure 5. Six of the 500 images that were used to test the robustness against occlusions.

Figure 6. Three of the 200 images that were used to test the robustness against arbitrary illumination
changes.

that can be shifted with an accuracy of1µm and can be ro-
tated with an accuracy of0.7′ (0.011667◦). Three image
sequences were acquired: In the first sequence, the IC was
shifted in10µm increments to the left in the horizontal di-
rection, which resulted in shifts of about 1/7 pixel in the
image. A total of 40 shifts were performed, while 10 im-
ages were taken for each position of the object. The IC was
not occluded in this experiment and the illumination was
not changed. In the second sequence, the IC was shifted
in the vertical direction with upward movement in the same
way. However, a total of 50 shifts were performed. The
intention of the third sequence was to test the accuracy of
the returned object orientation. For this purpose, the IC was
rotated 50 times for a total of5.83◦. Again, 10 images were
taken in every orientation.

During all accuracy tests Euclidean motion was used as

transformation class. The search angle for all approaches
was restricted to the range of [−30◦;+30◦], whereas the
range of translation parameters again was not restricted.
The increment of the quantized orientation step was set to
1◦, which results in the models containing 61 rotated in-
stances of the template image at the lowest pyramid level.
Since no occlusions were present the threshold for the min-
imum score could be uniformly set to 80% for all ap-
proaches. For the maximum error of the sum of absolute
differences we used a value of 25. Lower values resulted in
missed objects, if the IC was rotated in the middle between
two quantized orientations, e.g.0.5◦, 1.5◦, etc., whereas
higher values resulted in expensive computations. In shape-
based matching the greediness parameter was set to 0.5,
which represents a good compromise between recognition
rate and computation time.
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3.2.3. Computational Time

In order to apply the third criterion, exactly the same con-
figuration was employed as it was used for the accuracy
test described in section 3.2.2. The computation time of the
recognition processes was measured on a 400 MHz Pentium
II for each image of the three sequences and for each recog-
nition method (excluding again the Hausdorff distance for
the reason mentioned above). In order to assess the corre-
lation between restriction of parameter space and computa-
tion time, additionally, a second run was performed without
restricting the angle interval.

In this context it should be noted that the modified Hough
transform is the only candidate that is able to recognize the
object, even if it partially lies outside the search image. The
translation range of the other approaches is restricted auto-
matically to the positions at which the object lies completely
in the search image. Particularly in the case of large ob-
jects this results in an unfair comparison between the Hough
transform and the other candidates, when considering com-
putation time.

3.3. Results

In this section we present the results of the experiments
described in section 3.2. Several plots illustrate the perfor-
mance of the examined recognition methods. The descrip-
tion and the analyses of the plots are structured as in the
previous section, i.e., at first the results of the robustness,
then the accuracy, and finally the computation time are pre-
sented.

3.3.1. Robustness

At first, the sequence of the occluded IC was tested. Figure
7 shows the recognition rate of the shape-based matching
approach depending on the minimum score and the greed-
iness parameter. As expected, the number of correctly rec-
ognized objects decreases with increasing minimum score,
i.e., the higher the degree of occlusion the smaller the pa-
rameter of the minimum score must be chosen to find the
object. What also can be seen from this figure is that appar-
ently the greediness parameter must be adjusted very care-
fully when dealing with occluded objects: For the given
minimum score of 50% the recognition rate varies in the
range between 48% and 82% corresponding to the two ex-
treme greediness values of 1 and 0. On the other hand
decreasing the greediness parameter from 1, which would
never be chosen in practice, to 0.8 already improves the
recognition rate to 64%. When we look at the curve cor-
responding to the greediness value 0, we can see that if the
minimum score was chosen small enough the object was
found in almost all images . The correlation between the
score and the visibility of the object is studied beneath.
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Figure 7. Recognition rate in the case of oc-
clusions of shape-based matching using dif-
ferent values for the parameter greediness.
The ”greedier” the search the more matches
are missed.

A complete comparison of all approaches concerning the
robustness against occlusion is shown in Figure 8. Here,
the superiority of our two novel approaches becomes clear.
Note that the robustness of the modified Hough transform
hardly differs from the robustness achieved by the shape-
based matching when using a greediness of 0. Looking at
the other approaches, only the Hausdorff distance reaches
a comparable result, which is, however, inferior in most
cases. For example, when using a threshold for the mini-
mum forward fraction of 50% the recognition rate is about
72%, i.e., the shape-based matching performed 10% better
and the modified Hough transform — with a corresponding
recognition rate of 83% — 11% better than the method us-
ing the Hausdorff distance. The recognition rate of the nor-
malized cross correlation does not reach 50% at all, even
if the minimum score is chosen small. The approach using
the sum of absolute differences shows a similar behavior.
Although the expectation is fulfilled that the robustness in-
creases when the maximum error is set to a higher value,
even relatively high values for the mean maximum error
(e.g., 30) only lead to a small recognition rate of about 35%.
A further increase of the maximum error is not reasonable
because of two reasons: first, the computation time would
make the algorithm unsuitable for practical use and second,
this would lead to many false positives, i.e., an occluded in-
stance could not be distinguished from clutter in the search
image.

Figure 9 displays a plot of the extracted score against the
estimated visibility of the object. The instances in which the
model was not found are denoted by a score of 0, i.e., they
lie on thex axis of the plot. For the sum of absolute differ-
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Figure 8. The recognition rate of different ap-
proaches indicates the robustness against
occlusions. This figure shows the recogni-
tion rate (a) of four candidates depending on
the minimum score and (b) of the approach
using the sum of the absolute differences de-
pending on the maximum error.

ences again the error is plotted instead of the score. What
can be seen is that the error is negatively correlated with the
visibility. Nevertheless the points are widely spread and not
close to the ideal virtual line with negative gradient. In addi-
tion, despite of a very high degree of visibility many objects
were not recognized. One possible reason for this behavior
could be that in some images the clutter object does not oc-
clude the IC yet, but throws its shadow on the IC, which
strongly influences this metric.

In the plot of the Hausdorff distance the wrong matches

either have a forward fraction of 0% or close to 50%. Here,
a noticeable positive correlation can be observed, but sev-
eral objects with a visibility of far beyond 50% could not
be recognized. This explains the lower recognition rate in
comparison to our approaches, which was mentioned above.

The normalized cross correlation also shows positive
correlation but similar to the sum of absolute differences
the points in the plot are widely spread and many objects
with high visibility were not recognized.

In contrast, the plots of our new approaches show a point
distribution that is much closer to the ideal: The positive
correlation is conspicuous and the points lie close to a fitted
line, the gradient of which is close to 1. In addition, objects
with high visibility are recognized with a high probability.

Another very interesting plot is shown in Figure 10, in
which the position error of the five approaches under the
stringent condition of occlusion is described. The reason
why this analysis is shown in this section instead of section
3.3.2 is that robustness against occlusion not only means
to recognize the object at all, but to find it at the correct
position. It can be seen that the IC was accidentally shifted
twice. The position errors are all very close to the three
cluster centers except for the Hausdorff distance, for which
in some instances the best match was more than 30 pixels
from the true location. Concerning the other approaches
some of the larger errors in they coordinate result from
refraction effects caused by the transparent ruler that was
used in some images to occlude the IC.

In the following the robustness against arbitrary illumi-
nation changes is analyzed. In Figure 11 the recognition
rate of the shape-based matching approach is plotted using
different values for the greediness parameter, as in the case
of occlusion. Additionally, the robustness of the modified
Hough transform depending on the minimum edge ampli-
tude in the search image is also analyzed.

Here, the effect of different greediness values is smaller
than in the case of occlusion. Disregarding the result ob-
tained with greediness=1, the discrepancy is smaller than
10%. In contrast, the recognition rate of the modified
Hough transform strongly depends on the chosen threshold
for edge extraction in the search image. The higher the min-
imum edge amplitude the more edge pixels were missed,
because dimming the light as well as stronger ambient il-
lumination reduces the contrast. Thus, this effect is com-
parable to the effect of higher occlusion. Therefore, a high
recognition rate can be obtained by setting the minimum
score to a lower value or by choosing a lower threshold for
the edge amplitudes. For example, a minimum score of 50%
and an edge threshold of 10 leads to a recognition rate of
84%. Nevertheless, the true invariance of the shape-based
matching approach could not be reached by the modified
Hough transform.
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Figure 9. Extracted scores plotted against the visibility of the object. For the approach using the
sum of absolute differences the error is plotted instead of the score.
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Figure 10. Position errors of the approaches using the 500 images of the occluded IC.

Figure 12 shows a comparison of the robustness of all ap-
proaches. Again, the sum of absolute differences shows low
recognition rates: in comparison to the robustness against
occlusion the overall recognition rate even decreases. Now,
the best recognition rate that could be obtained using a max-
imum error of 30 was only 11%. By comparing this value to
the result obtained for a maximum error of 20, which is also
11%, it is obvious that even by further increasing the max-
imum error no improvement can be reached. In compar-
ison, the recognition rate of the normalized cross correla-
tion is substantially better. This can be attributed to its nor-
malization, which compensates at least global illumination
changes. The results obtained by the Hausdorff distance are
superior to that of the both approaches last named but could
not reach the performance of the shape-based matching ap-
proach by far. If the minimum score is set low enough, the

recognition rate of the modified Hough transform surpasses
that of the shape-based matching, however, for higher val-
ues its recognition rate rapidly falls.

3.3.2. Accuracy

Since the Hausdorff distance does not return the object po-
sition in subpixel accuracy, only the accuracy of the four
remaining candidates are evaluated in this section. To asses
the accuracy of the extracted model position and orientation
a straight line was fitted to the mean extracted coordinates
of position and orientation. This is legitimated by the lin-
ear variation of the position and orientation of the IC in the
world as described in section 3.2. The residual errors of
the line fit, shown in the Figures 13 – 15, are an extremely
good indication of the achievable accuracy. As can be seen
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Figure 11. Recognition rate in the case of il-
lumination changes of (a) the shape-based
matching using different values for the pa-
rameter greediness and (b) the modified
Hough transform using different values for
the minimum edge amplitude in the search
image.

from the Figures 13 and 14 the errors inx approximately
have the same magnitude asy. The position accuracy of
the normalized cross correlation, the modified Hough trans-
form and the shape-based matching approach are very sim-
ilar. They corresponding errors are in most cases smaller
than 1/20 pixel. The two conspicuous peaks in the error
plot of Figure 13 occur for all three approaches with similar
magnitude. Therefore, it is most probably, that the chip was
not shifted exactly and thus, the error must be attributed to a
deficient acquisition. However, the high errors inx andy of
about 1/10 pixel of the approach using the sum of absolute
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Figure 12. The recognition rate of different
approaches indicates the robustness against
arbitrary illumination changes. This figure
shows the recognition rate (a) of four candi-
dates depending on the minimum score and
(b) of the approach using the sum of the ab-
solute differences depending on the maxi-
mum error.

differences can not be attributed to this. These errors oscil-
lates with a period of 1 pixel: The minima are reached for
shifts of 1

2 · n pixels, the maxima occur at12 · n + 1
4 pixels,

wheren is an integer.

Figure 15 shows the corresponding errors in orientation.
Here, the shape based matching approach is superior to all
other candidates reaching a maximum error of1/12◦ (5’) in
this example. The angle accuracy of the other three candi-
dates is about1/6◦ (10’).
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Figure 13. Position accuracy as the differ-
ence between the actual x coordinate of the
IC and the x coordinate returned by the
recognition approach while shifting the chip
successively by 1/7 pixel to the left.
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Figure 14. Position accuracy as the differ-
ence between the actual y coordinate of the
IC and the y coordinate returned by the
recognition approach while shifting the chip
successively by 1/7 pixel upwards.

3.3.3. Computation Time

The last criterion, which was applied, is the computation
time of the recognition approaches. Figure 16 shows the
mean recognition time of the four approaches for each shift
of the IC. In Figure 16 (a) the angle interval was restricted to
[−30◦;+30◦]. In this respect the shape-based matching ap-
proach (50 ms) and the modified Hough transform (60 ms)
are substantially faster than existing approaches using the
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Figure 15. Orientation accuracy as the differ-
ence between the actual object orientation of
the IC and the returned angle by the recogni-
tion approach while rotating the chip succes-
sively by approx. 1/9◦ counterclockwise.

normalized cross correlation (140 ms) or the sum of abso-
lute differences (220 ms). The results when using an unre-
stricted angle interval are shown in Figure 16 (b). Now, the
modified Hough transform (90 ms) is slightly faster than
the shape-based matching approach (100 ms), which indi-
cates an advantage of the modified Hough transform over
the shape-based matching if the transformation space in-
creases. The computation time of the normalized cross cor-
relation (290 ms) and the sum of absolute differences (530
ms) approximately increase with the same ratio. That is, in
this example our new approaches are 2.5 to 5.3 times faster
than the existing methods.

A similar behavior is obtained when searching for the ro-
tated IC. In Figure 17 the mean recognition time of the four
approaches for each orientation of the IC is shown. What
should be noted is that the more the IC is rotated relatively
to the reference orientation the longer the computation time
of the normalized cross correlation. Obviously, the imple-
mentation of [7] does not scan the whole orientation range
at the highest pyramid level before the matches are traced
through the pyramid but starts with a narrow angle range
close to the reference orientation. The adjacent orienta-
tions are not scanned until no matches could be found in
the angle range close to the reference orientation. Thus,
the computation time of the normalized cross correlation
shown in Figure 16 is not directly comparable to the other
approaches, because the orientation range of [−30◦;+30◦]
or [0◦;+360◦] is not really scanned, i.e., a comparable com-
putation time would be still higher.
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Figure 16. Computation time of the different
approaches on a 400 MHz Pentium II using
the shifted IC (a) with angle restriction to
[−30◦;+30◦] and (b) without angle restriction.

4. Conclusions

We presented an extensive performance evaluation of
five object recognition methods. For this purpose, the nor-
malized cross correlation and the sum of absolute differ-
ences as two standard similarity measures are compared to
the Hausdorff distance and two novel recognition methods
that we developed with the aim to fulfil increasing industrial
demands. We showed that our new approaches have consid-
erable advantages and are substantially superior to the ex-
isting methods. In most cases the shape-based matching ap-
proach and the modified Hough transform show equivalent
behavior. The shape-based matching approach should be
preferred when dealing with intense illumination changes
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Figure 17. Computation time of the different
approaches on a 400 MHz Pentium II using
the rotated IC (a) with angle restriction to
[−30◦;+30◦] and (b) without angle restriction.

and situations where it is important to know the exact orien-
tation of the object. In contrast, the modified Hough trans-
form is better suited when either the dimensionality or the
extension of the parameter space increases and the compu-
tation time is a critical factor.
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