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Abstract. This paper describes a method for recognizing and tracking
3D objects in a single camera image and for determining their 3D poses.
A model is trained solely based on the geometry information of a 3D CAD
model of the object. We do not rely on texture or reflectance information
of the object’s surface, making this approach useful for a wide range of
object types and complementary to descriptor-based approaches.
An exhaustive search, which ensures that the globally best matches are
always found, is combined with an efficient hierarchical search, a high
percentage of which can be computed offline, making our method suitable
even for time-critical applications. The method is especially suited for,
but not limited to, the recognition and tracking of untextured objects
like metal parts, which are often used in industrial environments.

1 Introduction

In industrial or robot applications, often untextured objects like the metallic
clamps shown in Figures 1(a) and (b) must be recognized and tracked in monoc-
ular images. Obviously, the automation level of many industrial processes could
be improved significantly if the pose of such objects could be determined re-
liably. However, we are not aware of any published technique that is able to
robustly recognize and track an untextured 3D object in a monocular image in
a reasonable amount of time.

(a) (b) (c)

Fig. 1. (a) Image of two differently colored metallic clamps in a cluttered environment.
(b) Image of a partially hidden clamp. Our approach is able to detect the objects in
(a) and (b) reliably. (c) CAD model of the clamp shown in (a) and (b) that serves as
input for the model generation.
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2 Related work

Approaches for recognizing 3D objects in monocular images have been exten-
sively studied. One challenge is the very large six dimensional search space if the
object is imaged from an unknown viewpoint.

For a time, view-based approaches for 3D object recognition were very pop-
ular. The search image was compared with precomputed 2D views of the object
to determine the object pose ([5],[4],[7]). These approaches tried to deal with
the full geometric search space by clustering the views. None of them became
accepted in practice. Some view-based approaches use previous knowledge to
reduce the search space, e.g., [21], which assumes that the object is lying on a
conveyor belt and therefore appears in a known distance in front of the camera.

Other approaches circumvent the large geometric search space. Feature-based
approaches ([6], [8]) use features like gray value edges or more complex features
that result from grouping extracted primitives. The 3D pose of the object is
calculated directly from corresponding 2D-3D features. These approaches cir-
cumvent the large geometric search space but they have to deal with the search
space that results from establishing the correspondences, which can be very large
as well. More complex features can be used to reduce this search space, but then
the feature extraction becomes less robust, especially if parts of the object are
occluded. This makes these approaches unsuitable for real applications.

Descriptor-based methods ([2], [15], [3], [18], [1], [11]) create artificial views
of the object in which feature points are determined together with discriminative
descriptors. Based on these descriptors, a classifier is trained. In the search phase,
the correspondence between the model and the search image is established by
classifying the descriptors derived from the search image. The big advantage
of descriptor-based approaches is that their run-time is independent of the size
of the geometric search space. They show outstanding performance in several
scenarios but they are restricted to the recognition of textured objects because
only then meaningful descriptors can be determined.

There exist tracking approaches ([12], [16], [10], [13], [14]) that are able to
determine the pose of 3D objects based on their geometry or texture. They do
not have to deal with the above mentioned search space because the initial object
pose is required to be known. If the object appears too far away from the initial
pose, these approaches will fail. In practice, this is a critical problem because in
most applications it cannot be avoided that the object is occluded and reappears
at an unpredictable position in the image.

3 Detailed description of the approach

3.1 3D model generation

The input of the model generation step is the triangulated surface of the object
model. Figure 1(c) shows a CAD model of the clamps shown in Figures 1(a) and
(b). The object mainly consists of planar surfaces as well as of a cylinder, which
is approximated by several planar faces.
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(a) (b) (c) (d)

Fig. 2. Resulting model views inside a certain section of a spherical shell on pyramid
level 1 (a), level 2 (b), level 3 (c), and level 4 (d). The views are visualized by small
square pyramids representing the cameras.

Hierarchical view generation We propose a hierarchical view-based approach
that combines a pyramid search with a hierarchy of object views. With this, on
the top pyramid level only few views must be investigated. This allows to apply
an exhaustive search, which ensures that the globally best matches are always
found, but would be too expensive without the hierarchical approach.

For the training of the 3D model, different views of the object are generated
automatically by placing virtual cameras around the 3D object and by projecting
the object into the image plane of each virtual camera using the camera param-
eters of the real camera to be used for the recognition. The object is assumed
to be at the center of a sphere that defines a spherical coordinate system. The
virtual cameras, which are used to create the views, are arranged around the
object in such a way that they all point to the center of the sphere. The range of
poses covered by the virtual cameras can be restricted to a certain section of a
spherical shell (see Figure 2) by specifying intervals for the spherical parameters
λ (longitude), ϕ (latitude), and d (distance).

The sampling of the views within the pose range is automatically determined
during the training process to maximize robustness and speed of the recognition.
To further increase the speed of the recognition, the model is created on multiple
pyramid levels. Because higher pyramid levels allow a coarser sampling of the
views, the computation is performed for each pyramid level separately.

In Figures 2(a)–(d) the necessary views on different pyramid levels are shown.
Here, it is sufficient to distinguish only four different views on the fourth pyramid
level. At each view a reference to all child views is stored. The child views are
those views on the next lower pyramid level that represent the same range of
poses as the view on the current pyramid level. The references are stored in a
tree structure. This information is used in the online-phase to query for a given
view on a higher pyramid level the views on the next lower pyramid level to
refine the matches.

Model image generation After the tree has been completely generated, for
each pyramid level and each view on this level, a 2D model is created with
the approach presented in [19]. The 2D model consists of a plurality of edge
points with a corresponding gradient direction vector. The similarity measure
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used during the search is the mean absolute value of the dot products of the
corresponding normalized edge gradient directions in the model and in the search
image. It is robust to occlusions, clutter, and non-linear contrast changes.

It is essential that the scale-space effects that are introduced by the image
pyramid in the later search image are taken into account also during the model
generation. Therefore, it is not possible to directly use the projected 3D model
edges scaled to the corresponding pyramid level to create the 2D model. Instead,
the 3D model is projected into an image of the original resolution using an
appropriate hidden-line-algorithm, e.g. [17]. From this image, an image pyramid
is derived. This pyramid shows similar scale-space effects than the pyramid of
the search image. Therefore, the model edge points can now be extracted from
the respective pyramid level.

The projection is done in such a way that a 3-channel color image is obtained,
where the three channels represent the three elements of the normal vector of
the faces of the 3D object. This has the advantage that the edge amplitude
that can be measured in this color image is directly related to the angle in 3D
space between the normal vectors n1 = (R1, G1, B1) and n2 = (R2, G2, B2) of
two neighboring faces of the 3D object. Let us assume without loss of generality
(because of the isotropy of the color tensor, see below) that the two projected
faces cause a vertical edge in the image. Then, the first derivatives in row di-
rection are grR = grG = grB = 0 and in column direction are gcR = R2 − R1,
gcG = G2 − G1, and gcB = B2 − B1.

The edge amplitude in a color image can be obtained by computing the
eigenvalues of the color tensor C [9]:

C =
(

grr grc
grc gcc

)
(1)

where in the case of a 3-channel image

grr = grR
2 + grG

2 + grB
2

grc = grRgcR + grGgcG + grBgcB

gcc = gcR
2 + gcG

2 + gcB
2 (2)

The edge amplitude A is the square root of the largest eigenvalue of C.

A =
√

(R2 − R1)2 + (G2 − G1)2 + (B2 − B1)2 (3)

Thus, the edge amplitude computed in the image corresponds to the length of
the difference vector of the two normal vectors. The angle between both normal
vectors is derived from the edge amplitude by using the following formula:

δ = 2 arcsin(A/2) (4)

The obtained color image of the projected model serves as the model image
and is passed to the model generation step of the approach presented in [19],
extended by color edge extraction. First, the edge amplitude in the model im-
age is computed [9]. Only pixels that exceed a certain threshold are included
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(a) (b) (c) (d)

Fig. 3. Generated model image (a) and edges after applying a threshold on the color
edge amplitude corresponding to a minimum face angle of 5◦ (b), 15◦ (c), and 50◦ (d).

in the model. Often, the 3D description of the model contains many edges that
are invisible in a true image of the object. For example, such edges result from
triangulation methods of the CAD software that are used to approximate curved
surfaces by a sufficient number of planar faces. Consequently, these edges must
not be included in the 2D model. For example, the edges of the planar faces that
approximate the cylindrical hole in Figure 1(c) must be suppressed. Because of
the relation described above, one can suppress such edges by passing an appro-
priate threshold for the minimum face angle δmin, which is very intuitive. Then
the minimum angle can easily be transformed to a threshold value Amin that
can be applied to the edge amplitude by solving (4) for A.

Figure 3(a) shows the resulting model image of one sample view. In Fig-
ure 3(b) the edges that result when setting δmin = 5◦ (Amin = 0.087) are
visualized. Because the planar faces that approximate the cylinder occur in 8◦

steps, the vertical edges are still visible. The edges that are obtained when setting
δmin = 15◦ (Amin = 0.261) are shown in Figure 3(c). The edges of the cylinder
are successfully suppressed. Thus, the 3-channel model images enables the use of
existing 2D edge-based matching approaches by simply passing a threshold for
the edge amplitude to eliminate edges that are invisible in a real image. It also
has the advantage that the problem of generalizing a 3D model when using a
pyramid approach becomes unnecessary because the scale-space effects are taken
implicitly into account by computing the image pyramid of the model image.

Finally, the 2D model is generated from the 3-channel image on the associated
image pyramid level (see [19] and [9] for details). The 2D model created on the
current pyramid level is automatically rejected if it does not show enough distinct
characteristics that are necessary to distinguish the model from clutter in the
image (see [20] for details).

The 3D model consists of a plurality of 2D models on several pyramid levels.
For each 2D model, the corresponding 3D pose is stored. Additionally, 2D models
on neighboring pyramid levels are connected in form of the tree described above.

3.2 3D object recognition

In the online-phase the created 3D model is used for recognizing the 3D object
in a single camera image and for determining the 3D pose of the object with
respect to the camera coordinate system. First, an image pyramid is built from
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the input image. The recognition starts at the highest pyramid level on which
at least one valid 2D model is available. All 2D models on this pyramid level
are searched by computing a similarity measure [19] that is robust to occlusions,
clutter, and non-linear contrast changes between the 2D models of the views and
the current image pyramid level. For this, the 2D models are rotated and scaled
in the necessary range and the similarity measure is computed at each position of
the scaled and rotated 2D models in the image. The 2D poses (position, rotation,
scaling) of matches that exceed a certain similarity threshold are stored in the
list of match candidates. On the next lower pyramid levels all 2D models that
do not have a parent node in the tree are searched in the same way as the views
on the highest pyramid level. Additionally, the match candidates that have been
found on the previous pyramid level are refined. The refinement is performed by
selecting all child views in the tree and computing the similarity measure between
the 2D models of the child views and the current image pyramid level. However,
the range of investigated positions, rotations, and scalings can be limited to a
close neighborhood of the parent match. This process is repeated until all match
candidates are tracked down to the lowest pyramid level. The combination of
a pyramid approach with hierarchical model views that are arranged in a tree
structure is essential for time-critical applications and has not been applied in
previous recognition approaches.

The 2D models are created during the training by assuming a camera that
is directed to the object center. Note that by this the original 6 degrees of
freedom are not covered as often believed, because the object may appear at an
arbitrary position in the search image. The 2D transition between the 2D model
and the imaged object corresponds to a 3D rotation of the camera around its
optical center. Therefore, the 2D model and the imaged object are related by
a 2D homography. To cope with this, we transform the 2D model by applying
the homography before performing the matching. This is an absolutely essential
step that to our best knowledge has not been applied in previous view-based
recognition approaches. The parameters of the homography are computed based
on the position of the object in the image that is approximately known from the
next higher pyramid level.

On the top pyramid level, an exhaustive search must be performed because
no previous knowledge is available. Thus, the matching is performed at all im-
age positions. However, projectively transforming the models depending on the
current image position would be too expensive. Fortunately, on the highest level
in general the projective distortions are very small because of the subsampling
that comes with the image pyramid. To further reduce the distortions on the top
pyramid level, the planar 2D model as well as the image is mapped to the surface
of a sphere before applying the matching on the highest pyramid level. Then,
the projection does not change when rotating the camera around its optical cen-
ter. Unfortunately, there is no mapping from the sphere into the plane without
introducing distortions. However, in general these distortions are smaller than
the projective distortions. The tracing through the pyramid is performed in the
original (non-spherical) image as described above.
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As result of the matching one obtains the 2D poses (position, rotation, scal-
ing) of the 2D matches that exceed a certain similarity measure. For each match,
the corresponding 3D object pose is computed based on the 2D matching pose
and the 3D pose of the model view that is associated with the match.

3.3 Pose refinement

The accuracy of the obtained 3D pose is limited to the sampling of the views and
the sampling of the 2D poses during the 2D matching. For practical applications,
this is insufficient. Therefore, a refinement of the 3D pose is performed by using
a least-squares adjustment. For this, the 3D object is projected into the search
image by using the current pose. Lines that are invisible or that represent object
edges at which the angle between the two adjacent object faces is below the
specified minimum face angle (see Section 3.1) are suppressed. The visible pro-
jected model edges are sampled to discrete points. For each sampled edge point a
corresponding subpixel-precise image edge point is searched in the neighborhood
of the projected model edge. Finally, the refined 3D pose is obtained through
a robust iterative non-linear optimization using the Levenberg-Marquardt algo-
rithm. During the optimization the squared distances of the image edge points to
their corresponding projected model edge are minimized directly over the 6 pose
parameters. After the minimization, the refined pose parameters are available.
Because from the refined pose parameters new correspondences can arise, the
optimization algorithm is integrated within an outer iteration loop. The hidden-
line algorithm is only applied in the first iteration. In further iterations, not the
complete 3D model edge but only the part that was visible in the first iteration
is projected. This speeds up the pose refinement significantly. In most cases the
error that is introduced by this simplification only marginally degrades the ob-
tained accuracy because the initial pose is already close enough to the optimum
to prevent significant changes in the perspective.

3.4 Object tracking

To be able to track 3D objects, first the object must be detected and its pose
must be determined without prior knowledge of its position. This start pose of
the object can be determined with the above described approach. Then, to track
the object, the above described recognition approach is used in a slightly modified
form: The search range on the highest pyramid level is restricted to a small range
of poses around the pose of the object determined in the previous image. This
reduces the number of hypotheses on the highest pyramid level drastically and
leads to a faster and even more robust recognition of the object. If the object
cannot be recognized in the image, the search range is increased. With this, it
is possible to robustly track objects that are occluded in some frames and that
reappear at an unpredictable position. In Figure 4, a sequence of 12 images is
shown together with the corresponding recognition time. This sequence depicts
the above described tracking approach.
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(a) 426ms (b) 113ms (c) 112ms (d) 141ms (e) 326ms (f) 1029ms

(g) 155ms (h) 124ms (i) 133ms (j) 180ms (k) 168ms (l) 160ms

Fig. 4. Results of a tracking sequence: In (a), the complete pose range must be in-
vestigated because no initial pose is available. This results in a comparatively slow
recognition. In (b)-(d), the pose range is restricted to a small range around the pose of
the object in the previous image, leading to a faster recognition of the object. In (e), the
object is occluded and consequently not recognized. In (f), no initial pose is available
because the object was not recognized in the previous image, which leads to a slower
recognition. Finally, in (g)-(l), the object is tracked using the restricted pose range.

4 Evaluation

As a first evaluation of the recognition of 3D objects, we simulated various
objects. If the search range overlapped the simulated range of poses, the objects
were detected without exception. This is the benefit of the applied exhaustive
search, which always returns the global optimum.

To evaluate the accuracy of the detection, we compared the object pose
determined in a real image with a reference pose, derived using a calibration
target. Two different objects (clamp and fuse) were used for the evaluation. We
acquired 8 bit gray scale images of size 640× 480 with a focal length of 8.5mm,
where the objects where placed in a distance range between 150–350mm in front
of the camera. Table 1 shows the results derived from 50 test images of each
object. All tests were performed on a 2.33GHz Intel Xeon E5345. The models
were created within the pose range λ = ϕ = [−50; +50]◦ and d = [150; 200]mm
for the clamp model and d = [250; 350]mm for the fuse model.

To illustrate the robustness to occlusions, clutter, and contrast changes, in
Figure 5 typical images are shown in which the objects could be found correctly.

Object σpos [mm] σpos [%] σrot [◦] time [s]

Clamp 0.39 0.20 0.48 0.3
Fuse 0.74 0.21 0.60 0.9

Table 1. Result of the accuracy evaluation. The first two columns contain the standard
deviations of the position in mm and as percentage with respect to the absolute dis-
tance. The third column contains the standard deviations of the (Rodriguez) rotation
angle in degrees. The fourth column contains the mean recognition times.
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(a) (b) (c)

Fig. 5. The approach is robust to occlusions and clutter (a), to non-linear contrast
changes (b), and to reflections on the object’s surface (c) to a high degree. For illus-
tration purposes, the pose of the found object is visualized by overlaid edges.

5 Conclusions

A robust and fast method for recognizing and tracking a 3D object in a single
camera image and for determining its 3D pose was presented. Only geometry
information is used for recognition, and hence no texture information is needed.
The novel combination of a pyramid approach with hierarchical model views
that are arranged in a tree structure is essential for time-critical applications.
The generation of 3-channel model images enables the use of existing 2D edge-
based matching approaches by simply passing a threshold for the edge amplitude
to eliminate object edges that are not visible in a real image. The projective
transformation of 2D models during the tracing is essential for a high robustness
of the recognition approach. Finally, a high accuracy is obtained by applying
a subsequent 3D pose refinement without performing an expensive projection
in each iteration. Furthermore, optional methods are provided that efficiently
map the model and the image to a spherical projection to eliminate projective
distortions on the highest pyramid level that in some cases otherwise would
reduce the robustness of the 2D matching. Computation times well below 1
second allow even time-critical applications to benefit from our approach.

The presented tracking approach is based on the above described recognition
approach. It has the advantages that no initialization of the tracking process is
necessary and that the search range can be specified arbitrarily large. With this,
it is possible to recover the object, even if it was occluded and reappears at an
unpredictable position.
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