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Abstract. The paper presents an approach to the detection of deformable objects
in single images. To this end we propose a robust match metric that preserves the
relative edge point neighborhood, but allows significant shape changes. Simi-
lar metrics have been used for the detection of rigid objects. To the best of our
knowledge this adaptation to deformable objects is new. In addition, we present
a fast algorithm for model deformation. In contrast to the widely used thin-plate
spline, it is efficient even for several thousand points. For arbitrary deformations,
a forward-backward interpolation scheme is utilized. It is based on harmonic in-
painting, i.e., it regularizes the displacement in order to obtain smooth deforma-
tions. Similar to optical flow, we obtain a dense deformation field, though the
template contains only a sparse set of model points. Using a coarse-to-fine repre-
sentation for the distortion of the template further increases efficiency. We show
in a number of experiments that the presented approach in not only fast, but also
very robust in detecting deformable objects.

1 Introduction

The fast, robust, and accurate localization of a given 2D object template in images has
been a research topic for many decades. The results of these efforts have enabled numer-
ous different applications, because the detection of the pose of an object is the natural
prerequisite for any useful operation. If the object is deformable, not only the pose, but
also the deformation of the object must be determined simultaneously. Extracting this
information allows to unwarp the found region in the image and facilitates optical char-
acter recognition (OCR) or a comparison with a prototype image for, e.g., detection
of possible manufacturing errors. Various application domains, which necessitate the
detection of deformable objects, can still not be comprehensively solved. This is due
to the fact that on the one hand conventional pose estimation algorithms, like general-
ized Hough transform or template matching, do not allow the object to alter its shape
nonlinearly. On the other hand, descriptor-based methods notoriously fail if the image
contains not enough or only a small set of repetitive texture like in Figure 1.
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Fig. 1. Two images of a deformed logo. The detected deformed model is overlaid in white. The
detection works robustly even though the object contains only repetitive patterns.

1.1 Related Work

We roughly classify algorithms for pose detection into template matching and descriptor-
based methods. In the descriptor-based category, the rough scheme is to first determine
discriminative “high level” features, extract from these feature points surrounding dis-
criminative descriptors, and to establish correspondence between model and search im-
age by classifying the descriptors. The big advantage of this scheme is that the runtime
of the algorithm is independent of the degree of the geometric search space. Recent
prominent examples, which fall into this category, are [3, 13, 4, 16, 2]. While showing
outstanding performance in several scenarios, they fail if the object has only highly
repetitive texture or only sparse edge information. The feature descriptors overlap in
the feature space and are not discriminating anymore.

In the template matching category, we subsume algorithms that perform an explicit
search. Here, a similarity measure that is either based on intensities (like sum of ab-
solute differences (SAD), sum of squared differences (SSD), normalized correlation
(NCC) and mutual information (MI)) or gradient features is evaluated. Using intensi-
ties is popular in optical flow estimation and medical image registration, where a rough
overlap of source and target image is assumed [10, 14]. However, the evaluation of
intensity-based metrics is computationally expensive. Additionally, they are typically
not invariant against nonlinear illumination changes, clutter, or occlusion.

For the case of feature-based template matching, only a sparse set of features be-
tween template and search image is compared. While extremely fast and robust if the
object undergoes only rigid transformations, these methods become intractable for a
large number of degrees of freedom, e.g., when an object is allowed to deform perspec-
tively or arbitrarily. Nevertheless, one approach for feature-based deformable template
matching is presented in [8], where the final template is chosen from a learning set
while the match metric is evaluated. Because obtaining a learning set and applying a
learning step is problematic for many scenarios, we prefer to not rely on training data
except for the original template. Another approach is to use a template like [7] or [19].
Here an adapting triangulated polygon model is representing the outer contour. Unlike
this representation, our model is a set of edge points allowing us to express arbitrarily
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shaped objects e.g., curved or composite objects. In [11] and [9] a deformable template
model is adapted while tracking object hypotheses down the image pyramid. Here, for
each match candidate a global deformation field represented by trigonometric basis
functions is optimized. Unfortunately, this representation of the deformations is global,
so that small adaptations in one patch of the model propagate to all areas, even where
the object remains rigid. In contrast to this, we preserve local neighborhood, and there-
fore do not encounter this problem. However, we note that these works are the closest
approaches to ours and inspired us in several ways.

1.2 Main Contributions

This paper makes the following contributions: The first contribution is a deformable
match metric that allows for local deformations, while preserving robustness to illu-
mination changes, partial occlusion and clutter. While we found a match metric with
normalized directed edge points in [15, 17] for rigid object detection, and also for artic-
ulated object detection in [18], its adaptation to deformable object detection is new.

The second contribution is an efficient deformation model, allowing a dense un-
warping, even though the template contains only a sparse set of points. Therefore, we
first propagate the deformation into regions between the points and then back-propagate
these deformations into the original model. Hence, we obtain a reprojected smooth dis-
placement field from the original deformation. The proposed forward-backward har-
monic inpainting does not have the problems of folding typically encountered with the
popular thin-plate splines (TPS) [5]. Additionally, the manipulation of our model only
depends on the size of the enclosing rectangle, but not on the number of model points.
To the best of our knowledge these appealing properties have not yet been exploited in
the field of deformable object detection.

2 Deformable Shape-based Matching

In the following, we detail the deformable shape-based model generation and match-
ing algorithm. The problem that this algorithm solves is particularly difficult, since in
contrast to optical flow, tracking, or medical registration, we assume neither temporal
nor local coherence. While the location of deformable objects is determined with the
robustness of a template matching method, we avoid the necessity of expanding the full
search space as if it was a descriptor-based method.

2.1 Shape Model Generation

As mentioned in section 1.1, we want our model to represent arbitrary objects. For
the generation of our model, we decided to rely on the result of a Sobel edge detection.
This allows us to represent objects from template images as long as there is any intensity
change. Note that in contrast to corners or other point features, we can model objects
that contain only curved contours. Furthermore, directly generating a model from an
untextured CAD format is in principle possible. For all descriptor based approaches, a
manual alignment between template images that show the texture and the CAD model
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Fig. 2. In the left image the rectangular white ROI defines the template. The right image depicts
the extracted neighborhood graph of the model.

would be required. Therefore, our shape model Mrig is composed as an unordered set
of edge points

Mrig =
{
ri, ci, d

m
i , ni1, . . . , nik|i = 1 . . . n

}
(1)

Here, r and c are the row and column coordinates of the model points. dm denotes the
normalized gradient direction vector at the respective row and column coordinate of
the template. At model generation, we index for every model point the nearest k model
points ni1, . . . , nik. This allows us to access them efficiently at runtime. Because the
model generation is completely learning-free and the calculation of the neighborhood
graph is realized efficiently, this step needs, even for models with thousands of points,
less than a second. One example of this model generation by setting a region of interest
and the extracted neighborhood graph is depicted in Figure 2.

2.2 Deformable Metric Based on Local Edge Patches

Given the generated Mrig , the task of the deformable matching algorithm is to extract
instances of the model in new images. As mentioned in section 1.2, we therefore adapted
the match metric of [17]. This score function is designed such that it is inherently in-
variant against nonlinear illumination changes, partial occlusion and clutter. The score
function for rigid objects reads as follows:

s(r, c) =
1
n

n∑
i=1

〈dm
i , ds

(r+ri,c+ci)
〉

‖dm
i ‖ · ‖ds

(r+ri,c+ci)
‖

(2)

where ds is the direction vector in the search image, 〈·〉 is the dot product and ‖ ·‖ is the
Euclidean norm. Three observations are important: First, the point set of the model is
compared to a dense gradient direction field of the search image. Even with significant
nonlinear illumination changes that propagate to the gradient amplitude the gradient
direction stays the same. Furthermore, a hysteresis threshold or non maximum sup-
pression is completely avoided in the search image resulting in true invariance against
arbitrary illumination changes. Second, partial occlusion, noise, and clutter results in
random gradient directions in the search image. These effects lower the maximum of
the score function but do not alter its location. Hence, the semantic meaning of the
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score value is the ratio of matching model points. Third, comparing the cosine between
the gradients leads to the same result, but calculating this formula with dot products is
several orders of magnitudes faster.

To extend this metric for deformable object detection, we instantiate globally only
similarity transformations. By allowing successive local deformations, we implicitly
evaluate a much higher class of nonlinear transformations. Following this argument,
we distinguish between an explicit global score function sg , which is evaluated for,
e.g. similarity, and a local implicit score function sl, that allows for local deformations.

Independent Model Gradients

Image Gradients

Ambiguity

Gradients with Neighbors

No Ambiguity

Image Gradients

Fig. 3. In the left image, each model point is considered independently. This results in displace-
ments that are highly ambiguous. As depicted in the right picture, taking the local neighborhood
into account allows to resolve this ambiguity.

Similar to the rigid case, the global score function sg is a sum over all the model points
local contributions. If the model is partially occluded, only this ratio of all the model
points changes.

sg(r, c) =
1
n

n∑
i=1

sl(r, c, i) (3)

One observation that is important for designing the local score function is depicted in
Figure 3. If we allow the model points to deform independently, the gradient direction is
not discriminative anymore. Furthermore, if we allow a point to deform with a rotation
its local score value gives us a match for all positions. Even if we prevent rotations from
occurring, the ambiguity, particularly along edge contours, is not resolved. With clutter
or noise it is essential that the model can be discriminated from the background or from
similar objects.

As a remedy, we add rigidity constrains that take the movement and location of
neighborhood points into account. We assume that even after deformation the neigh-
borhood of each model point stays the same and is approximated by a local euclidean
transformation. Hence, we instantiate local euclidean transformations Tl for each point
and apply it on the local neighborhood. The local score then is the maximum align-
ment of gradient direction between the locally transformed model points and the search
image. Accordingly, the proposed local score functions sl is:
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sl(r, c, i) = max
Tl

1
k

k∑
j=1

〈Tl(dm
nij

), ds
(r+Tl(rnij

),c+Tl(cnij
))〉

‖dm
nij

‖ · ‖ds
(r+Tl(rnij

),c+Tl(cnij
))‖

(4)

For the sake of efficiency, we exploit the neighborhood graph that was generated in the
offline phase for accessing the neighboring points (the nij matrix). Furthermore, we
cache Tl(dm

nij
), Tl(rnij ) and Tl(cnij ) since they are independent of r and c.

2.3 Deformable Shape Matching

After defining an efficient score function that tolerates local deformations, we integrated
it into a general purpose object detection system. We decided to alter the conventional
template matching algorithm such that it copes with deformed objects. Hence, the de-
formable shape matching algorithm first extracts an image pyramid of incrementally
zoomed versions of the original search image. At the highest pyramid level, only the
rough location of the model is determined. To speed up this exhaustive search the eval-
uation of the score function can be transparently restricted in our implementation to
relevant search regions or to a restricted amount of rotation/scale ranges. The rough
location resides at the local maxima of the score sg function (3). This initial set of can-
didates are further refined until either the lowest pyramid level is reached or no match
candidates are above a certain score value. While tracking the candidates down the
pyramid, a rough deformation was already extracted during evaluation of the current
candidate’s parent on a higher pyramid level. Therefore, we first use the deformation
originating from the candidate’s parent to warp the model up to the known deforma-
tion. Now, starting from this deformed candidate the deformation is iteratively refined
by evaluating only the local score function with (4). Here, we keep the best displace-
ments Tl and reproject the candidate given the deformation model that we discuss later
in section 2.4. As a result of these local iterative refinements, we obtain the best in-
stance of the model with respect to the score function and the deformation model. This
deformed candidate is defined as:

Mdef = {r, c,Mrig, dri, dci} (5)

Here, r, c is the pose and dri, dci denote a displacement vector that brings each model
point from the rigid to the deformed position. Hence, we known the exact displacements
only at locations where there are model points.

However, for two reasons we need to infer deformations for positions, that we do
not know from measurements. First, when we propagate deformations between pyramid
levels, contour segments of our model exist only at certain pyramid levels. Hence, we
bring the model that is deformed to the pyramid level of the source deformation. Then
we apply the deformation and bring the model back to the original scale. Second, when
we finally unwarp the detected image region, we have to interpolate deformation at
image regions where there are no model points.

For the rigid planar case of a perspective deformation, we estimate the parameters of
a homography by the well-known normalized DLT algorithm. This parametrized warp
is applied in a straightforward way. As we think that this is not new, we do not discuss
this case further. However, for arbitrary deformations we need a suitable model.
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Fig. 4. The top image depicts a part of a search image deformed by a random TPS-transformation.
The left and middle images in the row below show the displacements at model points with re-
spect to row and column coordinates. A medium gray value means no deformation, brighter gray
values denote positive, dark negative displacements. As depicted in the left and middle picture
of the last row, we obtain a smooth deformation after forward-backward harmonic inpainting.
The right middle image contains the unwarped image region. The inverted difference image be-
tween unwarped and original model area is shown in lower right image. We observe only a small
difference that is due to sampling effects.
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2.4 Harmonic Deformation Model

Because no a priori information is known about the exact physical behavior of our
objects, we need a general deformation model. This model is used for propagating the
deformation down the image pyramid and to unwarp found instances (see section 2.3).
Even though we know the exact displacements at model points, we expect it to give
outliers, because no metric is resistant to occasional failure. Preliminary experiments
with the widely used Thin Plate Spline model, where we interpret model points as
landmarks, failed. The main problem is to suppress crossings of the moving landmarks,
leading to foldings. Particularly problematic are the cases, where different landmark
points end up at exactly the same point or when two nearby points move into different
directions. Even with the best local match metric, it is hardly possible to suppress this
entirely. Therefore, we take different measures for preventing foldings due to outliers.
As a first step we insert Mdef into a row and column deformation image. Hence, only
pixels, where model points are located, are set. One example for an inserted row/column
deformation is shown in Figure 4 (middle row, left/middle column). In the next step, we
infer the deformation of areas that are not lying at model points (The medium gray
pixels of the deformation images). We state this task as an inpainting problem where
the non-model region is regarded as destroyed pixels and must be interpolated. The
reconstruction that we use solves the discrete Laplace equation,

uxx + uyy = 0 (6)

for the corresponding pixel value u that originates from the deformation vector dri

and dci. This particular inpainting function can be decomposed into independent row
and column coordinates allowing an efficient solution by a conjugate gradient solver.
This is referred as harmonic interpolation in the image restoration literature [1]. In the
original region discontinuities and crossing are still present. Therefore, after we have
extrapolated the gray values, we apply the inpainting on the inverse (original) model
region. Hence, the original point displacements are only approximated. This implicitly
resolves the problem of crossings of landmark movements that are encountered along
contours. While harmonic inpainting gives reasonable results only for small regions
(because, e.g., edges or texture is lost), in our application it generates the desired de-
formation field (see image 4 lower row, left and middle). It strongly penalizes abrupt
changes in the model. Furthermore, it smooths out small errors of the detection that are
encountered frequently e.g. along contours.

3 Experiments

For evaluation of the robustness of the proposed object detection algorithm we con-
ducted experiments under synthetic and real world conditions. Under simulated con-
ditions we independently measure the influence of the proposed score function in sec-
tion 3.1 and the deformation model in section 3.2.

3.1 Comparison with Descriptor-based Matching

In order to compare the proposed method with state of the art detection algorithms, we
decided in a first step to restrict the deformation to a perspective distortion. Hence, the
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Fig. 5. Synthetic experiments: In the left picture the original template image is depicted. The
region of interest is overlaid in white. In the middle a perspectively distorted test image is shown.
The detected template is denoted with the white rectangle. In the right the results of the detection
experiments is plotted.

simulated model remains rigid and only the robustness of the detection is measured,
not the underlying deformation model. Here we are particularly interested to compare
the proposed method with a descriptor-based approach. We choose [12], because it is
known for its robustness even in the presence of big perspective changes. Therefore,
we generate homographies by random movements of the corner points of the rectangle
that define the model. These displacements define a perspective distortion that we apply
onto the original image (see Figure 5 left for the original and middle for the distorted
image). Both the shape matching and the descriptor-based approach try to extract a
homography from this image. For [12] we choose 25 trees of depth 11, favoring robust-
ness instead of speed. For each size of the movement we generated 500 random views.
We tested different images with different textured content. For highly textured objects
the proposed method only slightly outperforms [12]. However, we observe a significant
difference in objects like in Figure 5. The robustness of the descriptor-based method de-
creases rapidly even for small displacements. In contrast to this, the proposed method
is robust despite increasing distortions. This is mainly due to the fact that the repetitive
structures (like the leads at the chip) pose a problem for the descriptor-based method.
Furthermore, we observe that extracting edges is superior to interest points not only in
terms of robustness but also accuracy.

3.2 Simulated TPS and Harmonic Deformation

For testing reasons we generated various synthetic deformations with the TPS and our
proposed harmonic model. In Figure 6 the behavior for an exemplary result of the two
models under artificial displacements is depicted. This artificial displacement is defined
by six landmark points. The four that are at the corners of a quadrilateral are static and
two that are inside this quadrilateral move away such that their paths cross. These cross-
ings could originate from mismatches as discussed in section 2.4. Hence, the crossing
of the landmark points induce a non-diffeomorphic displacement. Under the TPS model
the image is distorted in an unnatural way. By penalizing the TPS deformation parame-
ters except the affine transformation (see [5]), we hoped to solve this problem. Unfortu-
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Fig. 6. Simulated Deformations: On the left image with TPS deformation and on the right with the
harmonic deformation model. The landmark correspondences are shown with the source/target
points as white crosses.

nately, it is difficult to adjust the regularizing parameter and control this kind of shape
change. A further observation is that a global deformation is extrapolated outside the
area of the landmarks. In contrast to this, the forward-backward harmonic deformation
model is parameter free and does not fold. It only bends the image locally according the
displacements. Also, only a translation is extrapolated globally, but not the nonlinear
shape change. We admit that this is a totally artificial example, but the robustness of a
deformation model with respect to outliers play a crucial role when a detection system
is constructed that must handle complex models automatically.

Another important observation is that the proposed harmonic deformation model
is an order of magnitude faster than the TPS deformation. The reason for this is that
the computational complexity for our harmonic deformation model is linear in the size
of the deformation field that is to be inpainted. Furthermore, it is independent of the
number of landmark points. In contrast to this, the complexity of calculating the TPS is
cubic with the size of the model points and therefore becomes intractable for large-scale
models like the one we use. However, efficient approximations for TPS functions are
still target of current research (see, e.g., [6]). While this difference cannot be noticed for
a small amount of landmark points (for less than 10 landmarks the TPS is even faster),
the difference is dramatic for large models. If we take typical example images like
Figure 4, the calculation of the TPS parameters and unwarping takes several minutes.
With the harmonic inpainting this is calculated in milliseconds.

3.3 Real World Experiments

The proposed object detection algorithm was tested on real sequences. Sample frames
are depicted in Figure 7. The object to be found is deformed, partially occluded, and
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Fig. 7. Detection of a deformed object in the presence of clutter, noise, changes and occlusion.
The video sequence is provided in the supplementary material. It shows the strength and limita-
tions of our approach.

illuminated in changing ways. After detection, we overlay the original image with the
model. Despite the different adverse conditions the object is found globally with high
robustness.

One remaining problem is that in case of partial occlusion we currently do not dis-
tinguish between deformation and occlusion. Furthermore, some model parts tend to
match with nearby edges of the same polarity. It is worth to mention that videos of dif-
ferent experiments are available on the web under http://campar.in.tum.de/Main/Andre-
asHofhauser.

4 Conclusion

In this paper we presented a solution for deformable template matching that can be
utilized in a wide range of applications. For this, we extended an already existing edge-
polarity-based match metric for tolerating local shape changes. The proposed deforma-
tion model, which is based on minimizing the Laplacian of the deformation field, allows
a precise unwarping and enforces smooth displacement fields in an elegant way.
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